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Overview

• the modern era in behavioral finance began in the 1980s

In today’s talk, 40 years later:

• I review some important frameworks we have developed in behavioral
finance

• I identify open questions

• and I discuss a recent shift in the field

– the “cognitive turn”

– i.e., the focus on cognitive foundations of beliefs and preferences
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Overview

The talk is designed to be:

• accessible to all finance scholars, regardless of area of specialty

– and even to non-academics

• mostly non-technical, focusing on intuition

• based on the work of many researchers
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Overview

• behavioral finance has three main areas of application

– asset pricing

– corporate finance

– household finance

• today, I will focus on asset pricing applications

– because it is a context that helps to identify the most important in-
vestor biases

– only biases that affect many investors in a correlated way have a chance
of influencing asset prices
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Overview

Major frameworks in behavioral asset pricing

• limits to arbitrage

Beliefs:

• disagreement in the presence of short-sale constraints

• (irrational, extrapolative) beliefs about returns *

• (irrational) beliefs about cash flows *

Preferences:

• gain-loss utility and prospect theory *
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Roadmap

• beliefs

– about returns

– about cash flows

• preferences

– gain-loss utility and prospect theory

• the cognitive turn in behavioral economics

– cognitive foundations of beliefs and preferences
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Beliefs about returns

• the most prominent idea regarding beliefs about returns is that they are
extrapolative

– beliefs about future returns are a positive function of recent past re-
turns

• this is motivated in part by survey evidence
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Lagged 12-month Returns Gallup Survey Expectations

Source: Greenwood and Shleifer (2014)
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Beliefs about returns

• return extrapolation has generated a lot of interest because it offers a
simple explanation for several prominent asset pricing puzzles

– excess volatility and predictability in the aggregate stock market (and
other asset classes)

– momentum and reversals in the cross-section of stocks

– bubbles
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Beliefs about returns

• consider an economy with T + 1 periods, t = 0, 1, . . . , T

• and two assets

– a riskless asset, with a constant return of zero

– a risky asset that is a claim to a single, final cash flow D̃T

D̃T = D0 + ε̃1 + . . . + ε̃T
ε̃t ∼ N(0, σ2ε) i.i.d.
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Beliefs about returns

• some investors have extrapolative beliefs about price changes

Ee
t (Pt+1 − Pt) = Xt ≡ (1− θ)

t−1∑
k=1

θk−1(Pt−k − Pt−k−1) + θt−1X1

• while other investors, “fundamental traders,” buy when prices are low
relative to expected cash flows

– and sell when prices are high relative to expected cash flows

• equilibrium asset prices are given by

Pt = Dt +
µe

µf
Xt − γσ2εQ(T − t− 1 +

1

µf
), t = 1, . . . , T − 1

Source: Barberis (2018)
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Beliefs about returns

• the resulting price dynamics, following a positive cash-flow shock at time
2, are:
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• the various asset pricing applications of return extrapolation can be seen
in this figure

11



Beliefs about returns

• there are now increasingly sophisticated models of return extrapolation
and asset prices

Aggregate stock market

• Barberis, Greenwood, Jin, Shleifer (2015); Adam, Marcet, Beutel (2017);
Jin and Sui (2022)

Cross-section of stocks

• Hong and Stein (1999); Barberis and Shleifer (2003); Da, Huang, Jin
(2021)

Bubbles

• Barberis, Jin, Greenwood, Shleifer (2018); Bastianello and Fontanier
(2024)

Real estate market

• Glaeser and Nathanson (2017)
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Beliefs about returns

This is promising, but there are many open questions:

• what is the source of return extrapolation?

– and can knowledge of the source deepen our understanding of the
empirical facts?

• what value of θ is consistent with observed prices, and is this value jus-
tified?

• does θ vary over time, and if so, why?

– Cassella and Gulen (2018)
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Beliefs about returns

More open questions:

• are return extrapolation models consistent with the facts about investor
portfolios?

– who are the investors who are actually trading according to extrap-
olative beliefs?

• Giglio, Maggiori, Stroebel, Utkus (2021) find that investors’ holdings are
relatively insensitive to their beliefs

– so can shifts in beliefs affect holdings enough to move prices?

• is this investor behavior really about beliefs?

– or does it reflect a different, non-belief mechanism?

– e.g., observational learning?
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Beliefs about returns

Sources of return extrapolation

• some are psychological in nature

– representativeness, base-rate neglect

– an incorrect belief in a law of small numbers

– memory

• others focus on boundedly-rational inference about underlying fundamen-
tals

– Hong and Stein (1999), Andre, Shirmer, Wohlfart (2023), Bastianello
and Fontanier (2024)
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Beliefs about returns

• the work on return extrapolation intersects in an important way with
research on “experience effects”

– Malmendier and Nagel (2011)

• in this context, the idea is that a person’s demand for a risky asset will
depend on a weighted average of the asset’s returns over that person’s
lifetime

• Malmendier and Nagel (2011) present evidence that such a formulation
may bring us closer to understanding both investors’ portfolio holdings
and stock market fluctuations

16



Beliefs about returns

Experience effects and asset prices

Source: Malmendier and Nagel (2011)
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Roadmap

• beliefs

– about returns

– about cash flows

• preferences

– gain-loss utility and prospect theory

• the cognitive turn in behavioral economics

– cognitive foundations of beliefs and preferences
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Beliefs about cash flows

• another line of research argues that important pricing puzzles are due to
incorrect cash-flow forecasts that overreact to news

– when prices are low, this is due to excessively pessimistic forecasts

– when prices are high, this is due to excessively optimistic forecasts

• Barberis, Shleifer, Vishny (1998), Nagel and Xu (2022), Bordalo, Gen-
naioli, La Porta, Shleifer (2024a,b), De La O and Myers (2021)

• most papers use analyst forecasts to provide evidence for this view

– specifically, forecasts of long-term earnings growth (LTG)
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Beliefs about cash flows

Aggregate market

• Bordalo, Gennaioli, La Porta, Shleifer (2024a) present several pieces of
evidence consistent with this view

– the P/E ratio is correlated with analysts’ forecasts of aggregate LTG

– LTG predicts future market returns with a negative sign

– LTG also predicts forecast errors for subsequent realized earnings
growth
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Beliefs about cash flows

Aggregate market

Source: Bordalo, Gennaioli, La Porta, Shleifer (2024a)
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Beliefs about cash flows

Individual stock level

• we can approximate the return on a stock as:

ri,t+1 ≈ ri +
(gi,t+1 − Et(gi,t+1)) +

∑
s≥1

αs(Et+1 − Et)(gi,t+1+s)


• Bordalo, Gennaioli, La Porta, Shleifer (2024b) compute the term in
square parentheses using analyst forecasts of future earnings

– use EPS forecasts up to two years out, and LTG forecasts from two
to five years out

– convert to dividend growth expectations using observed dividend pay-
out ratios
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Beliefs about cash flows

• Bordalo, Gennaioli, La Porta, Shleifer (2024b) find that the expectations-
based component can explain the entirety of the value and size anomalies

– and a substantial portion of the investment, profitability, and momen-
tum anomalies

• e.g., the high returns to value are due to investors revising upwards their
excessively pessimistic forecasts of future earnings growth
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Beliefs about cash flows

Earnings growth expectations and the value premium
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Source: Bordalo, Gennaioli, La Porta, Shleifer (2024b)
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Beliefs about cash flows

• LTG forecasts are the expectations that appear particularly helpful for
understanding asset prices

• the evidence above strongly suggests that LTG forecasts overreact to
information

– this is directly confirmed by Coibion-Gorodnichenko regressions for
both individual and consensus LTG forecasts

• important open question: what is the source of the overreaction?

– representativeness (e.g., “diagnostic expectations”), base-rate neglect

– an incorrect belief in a law of small numbers

– memory
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Beliefs about cash flows

Other open questions:

• which specific news are investors overreacting to?

• how does the overreaction in LTG forecasts fit with the observed under -
reaction in short-term earnings forecasts?

• are cash-flow expectations driving prices, or are prices driving the cash-
flow expectations?

– Chaudhry (2023), but also Bordalo, Gennaioli, La Porta, Shleifer
(2024a,b)
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Beliefs about cash flows

Which news are investors overreacting to?

• one view is that investors are overreacting to past tangible, i.e., account-
ing, information

– e.g., overreacting to past earnings growth

• the evidence on this is mixed

– Nagel and Xu (2022) find that a long-term weighted average of past
fundamentals predicts stock market returns with a negative sign

– Bordalo et al. (2024a) find that past earnings surprises lead to exces-
sive revisions in consensus analyst LTG forecasts

– but, in the cross-section, Daniel and Titman (2006) find that growth
in past fundamentals has no predictive power for returns

• the last finding has led some researchers to argue that investors may be
overreacting in part to intangible information
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Under- and over-reaction

• thus far, we have focused on over -reaction in beliefs about cash flows and
returns

• yet, some phenomena strongly suggest under -reaction

– e.g., post-earnings announcement drift (PEAD)

• more generally, all three of experiments, surveys, and markets display
instances of both under- and over-reaction

• reconciling this evidence remains an important open challenge

– recent work has made progress

– Bordalo, Gennaioli, Ma, Shleifer (2020), Augenblick, Lazarus, Thaler
(2024), Ba, Bohren, Imas (2024), Kwon and Tang (2024)
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Under- and over-reaction

Experiments Surveys Markets

Underreaction Conservatism (IND.) Near-term 

earnings and 

interest rates

(CNS.) Most 

economic 

variables

Price reaction to 

earnings news

Overreaction Representative-

ness;

time-series 

forecasts; 

overconfidence

(IND.) A majority 

of variables

(CNS.) Long-term 

earnings growth

Excess volatility; 

value premium
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Roadmap

• beliefs

– about returns

– about cash flows

• preferences

– gain-loss utility and prospect theory

• the cognitive turn in behavioral economics

– cognitive foundations of beliefs and preferences
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Gain-loss utility and prospect theory

• traditional models assume that investors make decisions under risk ac-
cording to the Expected Utility framework

• however, decades of laboratory research has found that Expected Utility
is not a very accurate description of choice under risk

• many “non-EU” models try to capture people’s decisions more accurately

– prospect theory, due to Kahneman and Tversky (1979, 1992), is by
far the most influential
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Prospect theory

Four elements:

Reference dependence

• people derive utility from gains and losses

Loss aversion

• they are much more sensitive to potential losses than to potential gains

Diminishing sensitivity

• people are risk averse over moderate-probability gains

– e.g., prefer $500 to a 50% chance of $1000

• but risk-seeking over moderate-probability losses

– e.g., prefer a 50% chance of losing $1000 to losing $500 for sure
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Prospect theory

Probability weighting

• people weight outcomes not with objective probabilities but rather with
transformed probabilities that overweight low-probability outcomes

– e.g., for the gamble “win $100 with probability 5%,” the typical person
states a certainty equivalent higher than $5
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Prospect theory

Probability weighting

34



Prospect theory: Aggregate stock market

• here, the “gains” and “losses” are typically taken to be annual changes
in financial wealth

• prospect theory then predicts a very substantial equity premium

– due to loss aversion (Benartzi and Thaler, 1995; Barberis, Huang,
Santos, 2001)

– but also due to probability weighting, as the returns of the aggregate
stock market are negatively skewed (De Giorgi and Legg, 2012)
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Prospect theory: The cross-section

• here, the “gains” and “losses” are typically taken to be gains and losses
in the value of individual stock positions

– defining them instead as changes in financial wealth leads to qualita-
tively similar results

• prospect theory then predicts that the average return of a stock will be
determined by:

– its return volatility, including idiosyncratic volatility

– its return skewness, including idiosyncratic skewness

– the average capital gain or loss across investors holding the stock (the
“capital gain overhang”)

average return = f (volatility(+), skewness(−), gain overhang(+))

36



Prospect theory: The cross-section

• volatility matters due to loss aversion

• skewness matters due to probability weighting
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Prospect theory: The cross-section

• capital gain overhang matters due to diminishing sensitivity

– Grinblatt and Han (2005)

gain

loss
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Prospect theory: The cross-section

• Barberis, Jin, Wang (2021) show that this framework can help explain
14 of 23 prominent anomalies

• e.g., the volatility, distress, momentum, profitability, and issuance anoma-
lies
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Prospect theory: Open question

• the elements of prospect theory are increasingly being seen as reduced-
form ways of capturing risk attitudes that are actually driven by deeper
psychological forces

– e.g., loss aversion

– e.g., probability weighting

• how does this change our interpretation of the various applications above,
and the way we model them?
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Overview

Major frameworks in behavioral asset pricing

• limits to arbitrage

Beliefs:

• disagreement in the presence of short-sale constraints

• (irrational, extrapolative) beliefs about returns *

• (irrational) beliefs about cash flows *

Preferences:

• gain-loss utility and prospect theory *
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Roadmap

• beliefs

– about returns

– about cash flows

• preferences

– gain-loss utility and prospect theory

• the cognitive turn in behavioral economics

– cognitive foundations of beliefs and preferences
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The cognitive turn in Behavioral Economics

• for the past 30 years, we have tried to make sense of financial phenomena
by applying the psychology of beliefs and preferences

– “high-level” psychology studied by Kahneman, Tversky, and others

• in the past five years, a new line of research has sought to understand the
cognitive foundations of these beliefs and preferences

• in the remainder of the talk, I review some of this research, and comment
on its potential
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The cognitive turn in Behavioral Economics

• there are several strands to the work on cognitive foundations

– cognitive uncertainty

– memory

– attention

– complexity

– reinforcement learning
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The cognitive turn in Behavioral Economics

Individual decisions

Beliefs Preferences

Attention Memory LearningCognitive noise
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Cognitive uncertainty

• cognitive uncertainty is a person’s subjective uncertainty as to what de-
cision is the right one, or what belief is the correct one

– e.g., they don’t know their true preferences, struggle to combine utils
and probabilities, or imperfectly perceive the problem

– e.g., they don’t know Bayes’ rule, or have trouble implementing it

• in this situation, Enke and Graeber (2023) propose that we can model a
person’s behavior as follows

– they have a prior about the right action to take – a “default action”
they would take in the absence of any deliberation

– they receive a noisy signal of the right action

– and then combine the two in a Bayesian fashion
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Cognitive uncertainty

More formally:

• suppose that

– the optimal action is a∗(θ), where θ is a payoff-relevant parameter

– the prior about the right action is drawn from N(ad, σ
2
0)

– the noisy signal of the optimal action, s(θ), is drawn fromN(a∗(θ), σ2)

• then, the action chosen is given by:

a(θ) = λs(θ) + (1− λ)ad
E(a(θ)) = λa∗(θ) + (1− λ)ad

λ =
σ20

σ2 + σ20

47



Cognitive uncertainty

• this can provide a foundation for multiple aspects of beliefs and prefer-
ences

– e.g., for evidence on belief updating

– e.g., for probability weighting
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Cognitive uncertainty

Belief updating

• in the 1960s, psychologists began to do lab studies to see how people
update their beliefs

Imagine two urns. Urn A has 700 blue chips and 300 green chips in it.
Urn B has 300 blue chips and 700 green chips in it.

One of the urns is chosen at random and 12 chips are drawn from it;
eight are blue and four are green.

What is the probability that the 12 chips were drawn from Urn A?
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Cognitive uncertainty

Belief updating

• people commonly give an answer in the range from 0.7 to 0.8

– but the correct answer is 0.97!

• in this example, there is strong under -reaction to the signal

– a finding known as “conservatism”

• but what is driving this phenomenon?
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Cognitive uncertainty

Belief updating

• under the cognitive uncertainty view, people are unsure what the right
answer is and therefore cling to their prior – the default probability esti-
mate of 0.5

• Enke and Graeber (2023) run the updating experiment and record each
participant’s cognitive uncertainty

• they find that conservatism is present primarily when people report sig-
nificant cognitive uncertainty
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Cognitive uncertainty

Probability weighting

• people weight outcomes not with objective probabilities, but rather with
transformed probabilities that overweight low-probability outcomes

• the cognitive uncertainty view: people are unsure about their certainty
equivalent for any gamble, and therefore shrink their stated equivalent
toward a default value

• in an experiment, Enke and Graeber (2023) ask participants for their
certainty equivalents for gambles, but also solicit levels of cognitive un-
certainty

– they find that probability weighting is much stronger when cognitive
uncertainty is high
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Cognitive uncertainty

Probability weighting
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Cognitive uncertainty

Probability weighting
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Cognitive uncertainty

This framework has important implications:

(1)

• the financial applications of probability weighting can be thought of, at
a deeper level, as being driven in part by cognitive uncertainty

– the overpricing of positively-skewed assets such as volatile stocks, dis-
tressed stocks, IPOs, and out-of-the-money options

• under cognitive uncertainty, probability weighting, and the preference for
positive skewness it embodies, is not a true preference

– but rather, a reflection of the brain’s cognitive limits

• as a consequence, the buying of lottery-type assets is more of a mistake
than previously thought
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Cognitive uncertainty

(2)

• cognitive uncertainty offers a deeper understanding of underreaction

• for years, we associated the apparent underreaction seen in post-earnings
announcement drift with the evidence on conservatism in belief updating

– but without knowing what drives conservatism, this does not give us
a real understanding of PEAD

• if cognitive uncertainty is the root of conservatism, this immediately offers
a concrete explanation for PEAD
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Cognitive uncertainty

(2), ctd.

• Barberis, Shleifer, Vishny (1998) present a model of under- and over-
reaction in financial markets based on “conservatism” and “representa-
tiveness”

• a more modern treatment would replace “conservatism” with “cognitive
uncertainty”

– Ba, Bohren, Imas (2024)

57



Memory

• a deeper study of human memory may help us better understand investor
beliefs, e.g., about returns

• broad idea:

– people recall past returns

– and then simulate from the recalled returns to form expectations of
future returns

– Bordalo, Burro, Coffman, Gennaioli, Shleifer (2022); Jiang, Liu, Peng,
Yan (2024)

• but which past returns do investors recall?

– Jiang, Liu, Peng, Yan (2024) do a large-scale survey in China to find
out

– they find that investors recall recent episodes and salient episodes
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Memory

Recalled episodes
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Source: Jiang, Liu, Peng, Yan (2024)
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Memory

This has two immediate implications:

• it offers a foundation for extrapolative beliefs about returns

• it suggests that our existing extrapolation and experience effect-based
models of beliefs about returns are incomplete

– they also need to account for a higher weight on salient past episodes
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Memory

• to make additional progress, we can exploit the large scientific literature
on memory

– the book Foundations of Human Memory (Kahana, 2012) is a useful
gateway to this research for economists

• Kahana, Diamond, Aka (2022) propose that there are five “laws” of hu-
man memory

– law of recency

– law of contiguity

– law of similarity

– law of primacy

– law of repetition
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Memory

• the law of similarity is particularly promising

• there is direct evidence for it in financial contexts

– Jiang, Liu, Peng, Yan (2024) find that, following a good (bad) return,
people are more likely to recall past episodes with good (bad) returns

Two implications:

(1)

• this further strengthens the memory-based foundation for extrapolative
beliefs about returns

– good recent returns will trigger recall of other episodes with good
returns
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Memory

(2)

• it also suggests that dramatic past episodes are more likely to be recalled
when currently experiencing a dramatic event

• this points to a mechanism of overreaction to dramatic news

• Enke, Schwerter, Zimmermann (2024) provide experimental evidence for
such a mechanism
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Reinforcement learning

• thought to be one of the brain’s fundamental learning mechanisms

– take actions that have been rewarded in the past

– don’t take actions that have not been rewarded in the past

• three developments have made the framework ripe for use by economists

– strong neural support for this learning mechanism

– the emergence of computational models of reinforcement learning

– the formulation of frameworks that combine reinforcement learning
with economists’ more traditional belief-based models

64



Reinforcement learning

• the reinforcement learning system computes Qt(s, a)

– the value of taking action a in state s and then continuing optimally
from the next period on

• this quantity is updated through experience

– take the action a in state s and observe what happens

– if the reward is higher than expected, increase the estimate of Q(s, a)

– if the reward is lower than expected, decrease the estimate of Q(s, a)

Qt+1(s, a) = Qt(s, a) + α[rt+1 + γmax
a′

Qt(st+1, a
′)−Qt(s, a)]
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Reinforcement learning

• Barberis and Jin (2023) implement this framework in the context of a
simple portfolio allocation problem

• show that it can shed light on a range of observed investment behaviors

– e.g., experience effects

– e.g., the insensitivity of allocations to beliefs

66



The cognitive turn: Benefits

(1)

• it offers a deeper understanding of several financial applications

– e.g., of financial phenomena previously associated with “conservatism”
in belief updating

– e.g., of phenomena associated with probability weighting

(2)

• the work on cognitive foundations offers a way of unifying an otherwise
scattered set of assumptions about beliefs and preferences

– seemingly different phenomena like conservatism and probability weight-
ing can be traced to the same cognitive root
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The cognitive turn: Challenges

• work on cognitive foundations in behavioral economics has focused pri-
marily on explaining beliefs and preferences

– and less on applications

• an exciting agenda is to try to link the cognitive foundations to financial
applications

But this agenda also faces some headwinds:

(1)

• by nature, the foundations involve low-level psychology that is further
removed from applications in finance

• by contrast, the psychology of beliefs and preferences is easier to link to
applications
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The cognitive turn: Challenges

Individual decisions

Beliefs Preferences

Attention Memory LearningCognitive noise
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The cognitive turn: Challenges

(2)

• the lower-level psychology provides compelling foundations for beliefs and
preferences

– but the applications of these belief and preference assumptions are
typically already known

– as such, the low-level psychology can immediately offer a re-interpretation
of these applications

– but it would be more exciting to come up with new applications or
new predictions
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The cognitive turn: Challenges

(3)

• as we work on cognitive foundations, we need to remain disciplined in
our assumptions

• until five years ago, behavioral finance was quite disciplined

– the center of gravity in the field was in a small number of concepts

– over-extrapolation, overconfidence, prospect theory

• we need to make sure that the influx of many lower-level cognitive con-
cepts into the field doesn’t erode this discipline
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The cognitive turn: A question

• does the cognitive turn in behavioral economics mean that we need to
replace our models of investor behavior?

• in some cases, the answer is probably “yes”

• but even as we better understand cognitive foundations, we may some-
times still want to work with reduced-form models of beliefs and prefer-
ences

– they are often easier to work with

– they avoid taking a stand on which cognitive foundation is the right
one

• examples:

– return extrapolation

– prospect theory
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Roadmap

• beliefs

– about returns

– about cash flows

• preferences

– gain-loss utility and prospect theory

• the cognitive turn in behavioral economics

– cognitive foundations of beliefs and preferences
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Conclusion

• today, behavioral finance is a vibrant field

– there is mounting evidence that behavioral finance mechanisms are
central to many important financial phenomena

– and more high-quality research in the area than ever before

• the outlook is promising for research in all three areas of application

– asset prices

– corporate finance

– household finance

• and for research on both beliefs and preferences

– with cognitive foundations playing an additional helpful role

• despite the progress, we have a long way to go

– there are many important open questions
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Resources

Readings

• Handbook of Behavioral Economics, 2018

– “Psychology-based Models of Asset Prices and Trading Volume,” (Bar-
beris)

– “Behavioral Corporate Finance” (Malmendier)

– “Behavioral Household Finance” (Beshears, Choi, Laibson, Madrian)

Online videos

• American Economics Association Continuing Education, 2017, Lectures
on Behavioral Finance (Malmendier, Barberis)
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Resources

Summer schools

• Yale Summer School in Behavioral Finance

Conferences

• NBER Behavioral Finance Meeting (Fall and Spring)

– live-streamed on Youtube
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