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Abstract

Motivated by neural evidence on the brain’s computations, cognitive scientists are

increasingly adopting a framework that combines two systems, namely “model-free” and

“model-based” learning. We import this framework into a financial setting, study its

properties, and use it to account for a range of facts about investor behavior. These

include extrapolative demand, experience effects, the disconnect between investor allo-

cations and beliefs in the frequency domain, the insensitivity of allocations to beliefs, the

inertia in household allocations, and the dispersion in these allocations. Our analysis

suggests that model-free learning may play a significant role in the behavior of some

investors.
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1 Introduction

A fundamental question in both economics and psychology asks: How do people make decisions

in dynamic settings? The traditional answer in economics is to say that people act as if they

have solved a dynamic programming problem. By contrast, over the past decade, psychologists

and neuroscientists have embraced a different framework for thinking about decision-making

in dynamic settings. This framework combines two algorithms, or systems: a “model-free”

learning system and a “model-based” learning system. In this paper, we import this framework

into a simple financial setting, study its implications for investor behavior, and show that it

is helpful for thinking about a range of empirical facts.1

The goal of both the model-free and the model-based algorithms is to estimate the value

of taking a given action. The model-free system goes about this in a way that is different

from traditional economic models. As its name suggests, it does not use a “model of the

world”: it makes no attempt to construct a probability distribution over future outcomes.

Rather, it learns from experience. At each date, it tries an action, observes the outcome, and

then updates its estimate of the value of the action by way of two important quantities: a

reward prediction error – the reward it observes after taking the action relative to the reward

it anticipated – and a learning rate. If the prediction error is positive, the algorithm raises

its estimate of the value of the action and is more likely to repeat the action in the future; if

the prediction error is negative, it lowers the estimated value of the action and is less likely

to try it again. This model-free framework has been increasingly adopted by psychologists

and neuroscientists because of evidence that it reflects actual computations performed by the

brain: numerous studies have found that neurons in the brain encode the reward prediction

error used by model-free learning.

The model-based algorithm, by contrast, is similar to traditional economic approaches in

that it does construct a model of the world – a probability distribution over future outcomes –

and then uses this to compute the value of different actions. We use a model-based approach

that is often adopted in research in psychology and that, like the model-free system, has

1An early paper on this framework is Daw, Niv, and Dayan (2005). Two prominent implementations in
laboratory settings are Glascher et al. (2010) and Daw et al. (2011). Useful reviews include Balleine, Daw, and
O’Doherty (2009) and Daw (2014). All of these papers are authored by cognitive scientists – by psychologists
and neuroscientists. We discuss the behavioral and neural evidence for the framework in more detail in Section
2.
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neuroscientific support. Under this approach, after observing an outcome at some moment

in time, the model-based system increases the probability it assigns to that outcome and

downweights the probabilities of other outcomes. To do the updating, it again uses a learning

rate and a prediction error that measures how surprising a realized outcome is; there is evidence

that the brain computes such prediction errors.

Recent research in psychology argues that, to make decisions, people use these two systems

in combination: they take a weighted average of the model-free and model-based estimates

of the value of different actions and use the resulting “hybrid” estimates to make a choice

(Glascher et al., 2010; Daw et al., 2011).

In this paper, we import this framework into a financial setting, study its implications for

investor behavior, and use it to account for a range of empirical facts. To our knowledge,

this is the first time the framework has been applied, in a comprehensive way, in an economic

domain outside the laboratory. We choose a simple setting: one where an individual allocates

money between a risk-free asset and a risky asset, which we think of as the stock market, in

order to maximize the expected log utility of wealth at some future horizon. This problem fits

the canonical context in which model-free and model-based algorithms are applied. The two

algorithms tackle the problem in different ways. The model-based system learns a distribution

of stock market returns over time by observing realized returns and then uses it to decide on

an allocation. The model-free system, by contrast, simply tries an allocation and observes

the resulting portfolio return; if this return is good, the model-free system raises its estimate

of the value of this allocation and is more likely to recommend this allocation again in the

future.

We begin by characterizing investor behavior in our framework, paying particular attention

to the model-free system – for economists, the more novel system. Specifically, we look at

how the stock market allocation proposed by each of the model-free and model-based systems

depends on past stock market returns. The model-based allocation puts weights on past

market returns that are positive and that decline for more distant past returns; this is because

the beliefs about future returns generated by the model-based system themselves put positive

and declining weights on past returns. We find that the model-free system also recommends

an allocation that puts positive weights on past returns, and show that it does so through a

mechanism that is new to financial economics and has nothing to do with beliefs. In brief: If
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an investor has a high allocation to the stock market and the market then posts a high return,

the high allocation will be strongly rewarded, making it likely that the investor will persist

with a high allocation. Conversely, if an investor has a high allocation to the stock market

and the market then drops sharply, the high allocation will be negatively rewarded, making

it likely that the investor will switch to a lower allocation.

We also find that, while the allocations generated by both the model-free and model-based

systems put positive and declining weights on past returns, the decline is much slower in

the case of the model-free system, with the result that this system puts much more weight on

distant past returns than does the model-based system. This is because the model-free system

updates slowly: since it learns from experience, at each time, it updates only the value of the

most recently-chosen allocation; the values of the other allocations are unchanged and hence

continue to depend only on more distant past returns. Consequently, it takes a long time for

the influence of distant past returns to fade.

Our results imply that the model-free system can offer a new foundation for the notion of

“extrapolative demand,” the idea, motivated by empirical evidence, that investors’ demand

for a risky asset depends on a weighted average of the asset’s past returns, where the weights

are positive and larger for recent returns. While prior work has typically assumed that this

extrapolative demand is driven by extrapolative beliefs, our analysis shows that it also emerges

from a foundation that has nothing to do with beliefs, namely model-free learning.

We present five applications of our framework, all related to investor behavior and investor

beliefs. These are: experience effects; the disconnect between allocations and beliefs in the

frequency domain; the insensitivity of allocations to beliefs; inertia in household allocations;

and dispersion in these allocations. This list of field applications is striking because, in prior

research, our framework has been used almost exclusively to explain behavior in experimental

settings. We link our framework to these applications primarily through numerical analysis:

we consider a large number of different parameterizations of our framework and show that

the empirical phenomenon in question emerges for all, or almost all, of the parameterizations

that put significant weight on model-free learning. We complement this numerical analysis

with new theoretical results that we obtain in a simplified version of the framework.

We briefly summarize the five applications here. Our framework provides a foundation

for experience effects – specifically, for the finding of Malmendier and Nagel (2011) that an
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individual’s allocation to the stock market can be explained in part by a weighted average of

the market returns he has personally experienced, with much less weight on returns he has

not experienced. Our framework captures this because of a basic feature of the model-free

system, namely that, because this system learns from experience, it engages only when an

individual is actively experiencing rewards. As such, it puts no weight on returns an investor

has not experienced.

Our framework can also address a puzzling disconnect between investor beliefs and stock

market allocations. While individual investors’ beliefs about future stock market returns

depend primarily on market returns in the recent past, Malmendier and Nagel (2011) find that

these investors’ allocations to the stock market depend significantly even on market returns

in the distant past. We reconcile these findings by way of a deep property of our framework,

which is that, of the two systems, only the model-based system has a role for beliefs: only

this system explicitly constructs a probability distribution over future outcomes. When an

individual is surveyed about his beliefs regarding future returns, he necessarily consults the

model-based system – only this system can answer the survey question – and gives an answer

that depends primarily on recent past returns: we noted above that the model-based system

puts heavy weight on recent returns. However, the individual’s allocation is influenced by

both the model-based and model-free systems; since the model-free system puts substantial

weight even on distant past returns, his allocation does too.

Through a similar mechanism, our framework can also explain another disconnect between

actions and beliefs, namely the low sensitivity of allocations to beliefs documented by several

recent studies in the cross-section of investors.2 If the stock market posts a high return, the

investor’s expectation about the future stock market return will go up significantly: the model-

based system, which determines beliefs, puts substantial weight on recent returns. However,

the investor’s allocation will be less sensitive to the recent return: it is determined in part by

the model-free system, which, relative to the model-based system, puts less weight on recent

returns.

Inertia is a general consequence of model-free learning: as an individual tries different

actions over time, one of them may be rewarded with a good outcome, leading the individual

to stick with that action going forward. This idea can be applied in many domains. In our

2See Ameriks et al. (2020), Giglio et al. (2021), Charles, Frydman, and Kilic (2024), and Yang (2025).
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setting, it sheds light on the inertia in household allocations to the stock market. After a

household tries an allocation, the allocation may be rewarded with a good portfolio return,

leading the household to stick with it in the future. We also show that the model-free system

generates substantial dispersion across households in their allocations to the stock market.

This offers a new way of understanding the empirically-observed dispersion, one that is not

based on differences in objective functions or beliefs, but instead on prior allocations being

rewarded with good returns.

Beyond our investigation of the above five applications, we present several additional anal-

yses: We study the predictions of more fully rational versions of the model-free and model-

based systems. We consider alternative action spaces beyond percentage allocations to the

stock market. We compare the framework’s implications to those of more traditional models

of inattention. We gauge the framework’s flexibility by computing measures of its “com-

pleteness” and “restrictiveness.” And finally, we lay out its key predictions. The immediate

prediction is that model-free estimates of action values will explain allocations, but this is

not implementable because the action values are not directly observed. We therefore develop

proxies for these action values that are, in principle, observable.

The full name of model-free learning is model-free reinforcement learning. Reinforcement

learning is a fundamental concept in both psychology and neuroscience, but has a much smaller

footprint in economics and finance. This is a natural moment to revisit reinforcement learning

in economics, for at least three reasons: cognitive scientists have developed computational

models of human reinforcement learning that we can apply; there is mounting neural evidence

for these models; and most important for our purposes, there is now a framework – the

framework we use in this paper – that combines reinforcement learning with traditional model-

based approaches. Taken alone, reinforcement learning is too extreme for most economic

settings; but in combination with model-based learning, it becomes more useful, as we show

in this paper.3

Our paper is also part of a new wave of research in behavioral economics that moves

beyond the work on judgment and decision-making made famous by Daniel Kahneman and

3Our approach does have antecedents in economics – most notably in research in behavioral game theory
on how people learn what actions to take in strategic settings (Erev and Roth, 1998; Camerer, 2003, Ch. 6).
One idea in this line of research, Camerer and Ho’s (1999) experience-weighted attraction learning, combines
reinforcement and model-based learning in a way that is reminiscent of, albeit different from, the hybrid model
we consider below.
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Amos Tversky, and instead incorporates deeper cognitive foundations into economics, whether

about memory (Bordalo, Gennaioli, and Shleifer, 2020), attention (Gabaix, 2019), cognitive

noise (Khaw, Li, and Woodford, 2021; Frydman and Jin, 2022; Enke and Graeber, 2023), or,

as in this paper, learning algorithms. A hallmark of these cognitive processes is that, in the

face of a complex world, they often simplify or approximate. So it is with model-free learning,

which is a simple algorithm for making decisions in a complex world. In the long run, it

can compute correct action values, but in the shorter term, it leads to departures from full

rationality, either because convergence to correct values takes a long time, or because it is not

perfectly suited to the environment at hand.

In Section 2, we formalize the model-free and model-based learning algorithms and show

how they can be applied in a financial setting. In Section 3, we study their implications

for investor behavior, focusing on how the stock market allocations they recommend depend

on past stock market returns. In Section 4, we discuss five applications of our framework to

understanding investor allocations and beliefs. Section 5 summarizes some additional analyses

while Section 6 concludes.

2 Model-free and Model-based Algorithms

To understand human decision-making, researchers in the fields of psychology and neuroscience

are increasingly adopting a framework that combines model-free and model-based learning

(Daw, Niv, and Dayan, 2005; Daw, 2014). In this section, we describe this framework and

propose a way of applying it in a financial setting. Specifically, in Section 2.1, we describe

the model-free algorithm; in Section 2.3, we lay out a model-based learning algorithm; and

in Section 2.4, we show how the two algorithms are combined. In Section 2.2, we present

the portfolio-choice problem that we apply the algorithms to. For much of the paper, we will

explore the properties and applications of model-free and model-based learning in this financial

setting. Along the way, we also summarize some of the psychological and neuroscientific

evidence for the framework.
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2.1 Model-free learning

Model-free and model-based learning algorithms are intended to solve problems of the following

form. Time is discrete and indexed by t = 0, 1, 2, 3,. . . At time t, the state of the world is

denoted by st and an individual takes an action at. As a consequence of taking this action

in this state, the individual receives a reward rt+1 at time t + 1 and arrives in state st+1 at

that time. The joint probability of st+1 and rt+1 conditional on st and at is p(st+1, rt+1|st, at).
The environment has a Markov structure: the probability of (st+1, rt+1) depends only on st

and at. In an infinite-horizon setting, the individual’s goal is to maximize the expected sum

of discounted rewards:

max
{at}∞t=0

E0

[
∞∑
t=1

γt−1rt

]
, (1)

where γ ∈ [0, 1) is a discount factor.

Economists almost always tackle a problem of this type using dynamic programming.

Under this approach, we solve for the value function V (st) – the expected sum of discounted

future rewards, under the optimal policy, conditional on being in state st at time t. To do this,

we write down the Bellman equation that V (st) satisfies, and with the probability distribution

p(st+1, rt+1|st, at) in hand, we solve the equation, either analytically or numerically. The

solution is sometimes used for “normative” purposes – to tell the individual how he should

act – and sometimes for “positive” purposes, to explain observed behavior.

For “positive” applications, where we are trying to explain why people behave the way

they do, the dynamic programming approach raises an obvious question. It may be hard to

determine the probability distribution p(·); and even if we have a good sense of this distri-

bution, it may be difficult, even for professional economists, to solve the Bellman equation

for the value function. How, then, would an ordinary person be able to do so? Economists

have long suggested that people act “as if” they have solved the Bellman equation, but they

have not explained how this would come about. Psychologists, by contrast, have been trying

to develop a more literal description of how people make decisions in dynamic settings – a

framework that is rooted in the brain’s actual computations. A prominent such framework

is the one we adopt in this paper, namely one that combines model-free and model-based

learning.

We now describe the model-free learning algorithm that we use. As their name suggests,
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model-free algorithms tackle the problem in (1) without a “model of the world,” in other

words, without using any information about the probability distribution p(·). The model-free

algorithms most commonly used by psychologists are Q-learning and SARSA. In the main

part of the paper, we use Q-learning. In the Internet Appendix, we show that SARSA leads

to similar predictions.4

Q-learning works as follows. Let Q∗(s, a) be the expected sum of discounted rewards – in

other words, the value of the expression

Et

[
∞∑

τ=t+1

γτ−(t+1)rτ

]
(2)

– if the algorithm takes the action at = a in state st = s at time t and then continues

optimally from time t + 1 on; the asterisk indicates that, from time t + 1 on, the optimal

policy is followed. The goal of the algorithm is to estimate Q∗(s, a) accurately for all possible

actions a and states s so that it can select a good action in any given state.

Suppose that, at time t in state st = s, the algorithm takes an action at = a – we describe

below how this action is chosen – and that this leads to a reward rt+1 and state st+1 at time

t + 1. Suppose also that, at time t, the algorithm’s estimate of Q∗(s, a) is Qt(s, a). At time

t + 1, after observing the reward rt+1, the algorithm updates its estimate of Q∗(s, a) from

Qt(s, a) to Qt+1(s, a) according to

Qt+1(s, a) = Qt(s, a) + αMF
t [rt+1 + γmax

a′
Qt(st+1, a

′)−Qt(s, a)], (3)

where αMF
t is known as the learning rate – the superscript stands for model-free – and where

the term in square brackets is an important quantity known as the reward prediction error

(RPE): the realized value of taking the action a – the immediate reward rt+1 plus a continua-

tion value – relative to its previously anticipated value, Qt(s, a). Put simply, the updating rule

in (3) says that, if, after taking the action a, the algorithm observes a better outcome than

anticipated, it raises its estimate of the value of that action. Importantly, only the Q value

of the most recently-chosen action, a, is updated; the Q values of the other actions remain

unchanged.

4Q-learning was developed by Watkins (1989) and Watkins and Dayan (1992). Sutton and Barto (2019,
Ch. 6) offer a useful exposition.
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How does the algorithm choose an action at in state st = s at time t? It does not

necessarily choose the action with the highest estimated value of Q∗(s, at), in other words,

with the highest value of Qt(s, at). Rather, it chooses an action probabilistically, where the

probability of choosing a given action is an increasing function of its Q value:

p(at = a|st = s) =
exp[βQt(s, a)]∑
a′ exp[βQt(s, a′)]

. (4)

This probabilistic choice, known as a “softmax” specification, serves an important purpose:

it encourages the algorithm to “explore,” in other words, to try an action other than the one

that currently has the highest Q value in order to learn more about the value of this other

action. In the limit as β → ∞, the algorithm chooses the action with the highest current Q

value; in the limit as β → 0, it chooses an action randomly. The parameter β is called the

“inverse temperature” parameter, but we refer to it more simply as the exploration parameter.

We discuss what exploration means in financial settings in more detail in Section 2.2.5

The algorithm is initialized at time 0 by setting Q(s, a) = 0 for all s and a. Consistent with

(4), the time 0 action is chosen randomly from the set of possible actions. The process then

proceeds according to equations (3) and (4). If the algorithm takes the action a in state s and

this is followed by a good outcome, the value of Q(s, a) goes up, making it more likely that,

if the algorithm encounters state s again, it will again choose action a. Computer scientists

have found Q-learning to be a useful way of solving the problem in (1); it can be shown that,

under certain conditions, the Q values generated by the algorithm eventually converge to the

correct Q∗ values (Watkins and Dayan, 1992).

Psychological background. While computer scientists make frequent use of model-free

algorithms like Q-learning, what is more important for our purposes is that psychologists and

neuroscientists are also interested in these algorithms. This is because of mounting evidence

that they play an important role in human decision-making. This evidence comes in two forms:

behavioral data – data on how people behave – and neural data on the brain’s computations.

The behavioral data come from experimental paradigms that allow researchers to isolate

the influence of model-free learning from more traditional model-based learning. One of the

5The softmax expression in (4) can also be interpreted in terms of Luce-style random utility. In a random
utility specification, even if the values of different options are known, there may be unobserved drivers of
choice or plain errors that can be modeled as stochastic choice. The concept of exploration instead recognizes
that the action values are estimated imprecisely and that exploration is needed to make them more accurate.
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best known is the “two-step task” introduced by Daw et al. (2011). We summarize this task

in Internet Appendix A. Analysis of participants’ behavior in this experiment finds a large

influence of model-free learning.6

Neural data are an even bigger factor behind the surge of interest in model-free learning.

A major finding in decision neuroscience is that the activity of certain neurons in the ventral

striatum region of the brain lines up well with the reward prediction error used by model-free

algorithms. This suggests that the brain implements such model-free algorithms when making

decisions. This observation was first made in influential papers by Montague, Dayan, and

Sejnowksi (1996) and Schultz, Dayan, and Montague (1997). A large number of subsequent

studies, using functional magnetic resonance imaging (fMRI) to study human decision-making,

have presented similar neural evidence for model-free learning.7

When psychologists use Q-learning to explain behavior, they often allow for different learn-

ing rates for positive and negative reward prediction errors, so that

Qt+1(s, a) = Qt(s, a) + αMF
t,± (RPE), (5)

where αMF
t,± = αMF

t,+ if the reward prediction error is positive and αMF
t,± = αMF

t,− otherwise. For

the sake of psychological realism, we also adopt this modification, although it is not required

for the applications we discuss later.

2.2 A portfolio-choice setting

In Section 2.3, we lay out a model-based algorithm to complement the model-free algorithm

of Section 2.1. Before we do so, it will be helpful to first describe the task that we apply both

algorithms to.

We consider a simple portfolio-choice problem, namely allocating between two assets: a

risk-free asset and a risky asset which we think of as the stock market. The risk-free asset

earns a constant gross return Rf = 1 in each period. The gross return on the risky asset

6Other experimental studies with a similar theme are Charness and Levin (2005), which we come back to
later in Section 2, Payzan-LeNestour and Bossaerts (2015), and Allos-Ferrer and Garagnani (2023).

7See McClure, Berns, and Montague (2003), O’Doherty et al. (2003), Glascher et al. (2010), and Daw et
al. (2011), among many others. Sutton and Barto (2019, Ch. 15) offer a useful review.
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between time t− 1 and t, Rm,t, where “m” stands for market, has a lognormal distribution

logRm,t = µ+ σεt

εt ∼ N(0, 1), i.i.d. (6)

At each time t, an investor chooses the fraction of his wealth that he allocates to the risky

asset; this corresponds to the “action” in the framework of Section 2.1, so we use the notation

at for it.
8 We construct an objective function that is realistic and also has the required form

in (1). Specifically, the investor’s goal is to maximize the expected log utility of wealth at

some future horizon determined by his liquidity needs. The timing of these liquidity needs is

uncertain; as such, the investor does not know in advance how far away this horizon is. More

precisely, at time 0, the investor enters financial markets. If, coming into time t ≥ 1, he is

still present in financial markets, then, with probability 1 − γ, where γ ∈ [0, 1), a liquidity

shock arrives. In that case, he exits financial markets and receives log utility from his wealth

at time t. A short calculation shows that the investor’s implied objective is then to solve

max
{at}∞t=0

E0

[
∞∑
t=1

γt−1 logRp,t

]
, (7)

where Rp,t, the gross portfolio return between time t− 1 and t, is given by

Rp,t = (1− at−1)Rf + at−1Rm,t. (8)

Comparing (1) and (7), we see that this portfolio problem maps into the framework of Section

2.1: the generic reward rt in equation (1) now has a concrete form, namely the log portfolio

return, logRp,t.

Given our assumptions about the returns of the two assets, we can solve the problem in

(7). The solution is that, at each time t, the investor allocates the same constant fraction a∗

of his wealth to the stock market, where

a∗ = argmax
a

Et log((1− a)Rf + aRm,t+1). (9)

8From now on, we use the terms “action” and “allocation” interchangeably.
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The fact that the problem in (7) has a mathematical solution does not necessarily mean

that real-world investors will be able to find their way to that solution. Many investors may

have a poor sense of the statistical distribution of returns; and even if they have a good sense

of it, they may not be able to compute the optimal policy or to discern it intuitively. Indeed,

for many investors, the solution in (9) will not be intuitive, as it involves reducing exposure

to the stock market after the market has performed well and increasing exposure to the stock

market after the market has performed poorly – actions that will feel unnatural to many

investors.

If an investor is unable to explicitly compute the solution to the problem in (7), there

are at least two reasons to think that a model-free system like Q-learning will play a role

in his decision-making. First, the model-free system is a fundamental component of human

decision-making. As such, it is likely to play a role in any decision unless explicitly “switched

off” – and because it operates below the level of conscious awareness, many investors will not

recognize its influence and will therefore fail to turn it off. Second, many people do not have

a good “model” of financial markets – for example, they have a poor sense of the structure of

asset returns. As a consequence, the brain is likely to assign at least some control of financial

decision-making to the model-free system – again, without a person’s conscious awareness

– precisely because this system does not need a model of the environment. This motivates

the question at the heart of this paper: How will an investor behave if model-free Q-learning

influences his actions?

How can Q-learning be applied to the above problem? In principle, we could apply equation

(3) directly. However, it is natural to start with a simpler case – the case with no state

dependence, so that Q(s, a) is replaced by Q(a). Even this simple case has rich implications

that shed light on empirical facts, and so it will be our main focus. In psychological terms,

removing the state dependence can be thought of as a simplification on the part of the investor.

Indeed, neuroscience research has argued that, to speed up learning, the brain does try to

simplify the state structure when implementing its learning algorithms (Collins, 2018).9 While,

for much of the paper, we put state dependence aside, we re-introduce it in Section 5 and

9It is tempting to justify the removal of the state dependence by saying that, since the risky asset returns
are i.i.d., the allocation problem has the same form at each time and so there is no state dependence. However,
we cannot use this argument because the model-free system does not know that the returns are i.i.d.; by its
nature, it does not have a model of the environment.
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summarize there an analysis in the Internet Appendix of the state-dependent case.

As in Section 2.1, then, let Q∗(a) be the expected sum of discounted rewards – in other

words, the value of

Et

[
∞∑

τ=t+1

γτ−(t+1) logRp,τ

]
– if the investor chooses the allocation a at time t and then continues optimally from the next

period on. Suppose that, at time t, the investor chooses the allocation a and observes the

reward – the log portfolio return, logRp,t+1 – at time t + 1. He then updates his model-free

estimate of Q∗(a) from QMF
t (a) to QMF

t+1 (a) according to

QMF
t+1 (a) = QMF

t (a) + αMF
t,± [logRp,t+1 + γmax

a′
QMF

t (a′)−QMF
t (a)]. (10)

At any time t, he chooses his allocation at probabilistically, according to

p(at = a) =
exp[βQMF

t (a)]∑
a′ exp[βQ

MF
t (a′)]

. (11)

Put simply, if the investor chooses an allocation a and then experiences a good portfolio

return, this tends to increase the Q value of that allocation and makes it more likely that he

will choose that allocation again in the future.

The exploration embedded in (11) is central to the model-free algorithm and to the way

psychologists think about human behavior. The term is less common in economics and finance.

Nonetheless, many actions in financial settings can be thought of as forms of exploration –

for example, any time an individual tries a strategy that is new to him, such as investing in

a stock in a different industry or foreign country, or in an entirely new asset class. In our

context, with one risk-free and one risky asset, exploration can be thought of as the investor

choosing a different allocation to the stock market than before in order to learn more about

the value of doing so.10

Given our assumption about the distribution of stock market returns, we can compute the

exact value of Q∗(a) for any allocation a. We record it here because we will use it in the next

10As noted in Section 2.1, another possible interpretation of the probabilistic choice in (11) is Luce-style
random utility.
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section. It is given by

Q∗(a) = E log((1− a)Rf + aRm,t+1) +
γ

1− γ
E log((1− a∗)Rf + a∗Rm,t+1), (12)

where a∗ is defined in (9).

In the basic model-free algorithm in (10), after taking action at = a at time t, only the

Q value of action a is updated. It is natural to ask whether the algorithm can generalize

from its experience of taking the action a in order to also update the Q values of other

actions. Computer scientists have studied model-free generalization (Sutton and Barto, 2019,

Chs. 9-13). As important for our purposes, research in psychology suggests that the human

model-free system engages in generalization (Shepard, 1987). While such generalization is not

required for any of the applications we discuss later, for the sake of psychological realism, we

incorporate it into our framework.

Given that we are working with the model-free system, it is important that the generaliza-

tion we consider does not use any information about the structure of the allocation problem.

We adopt a simple form of generalization based on the notion of similarity: after choosing an

allocation and observing the subsequent portfolio return, the algorithm updates the Q values

of all allocations, but particularly of those that are similar to the chosen allocation. We im-

plement this as follows. After choosing allocation a at time t and observing the outcome at

time t+ 1, the algorithm updates the values of all allocations according to

QMF
t+1 (â) = QMF

t (â) + αMF
t,± κ(â)[logRp,t+1 + γmax

a′
QMF

t (a′)−QMF
t (a)], (13)

where

κ(â) = exp(−(â− a)2

2b2
). (14)

In words, after observing the reward prediction error for action a and updating the Q value

of that action, the algorithm uses the same reward prediction error to also update the values

of all other actions. However, for an action â that differs from a, it uses a lower learning rate

αMF
t,± κ(â), one that is all the lower, the more different â is from a, to an extent determined by

the Gaussian function in (14).11

11Our generalization algorithm is consistent with research in psychology which identifies similarity as an
important driver of generalization (Shepard, 1987). It is also used in computer science, where it is known as
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We will consider a range of values of b, but for our baseline analysis, we set b = 0.0577,

which has a simple interpretation: for this b, the Gaussian function in (14), normalized to

form a probability distribution, has the same standard deviation as a uniform distribution

with width 0.2 – for example, the uniform distribution that ranges from a− 10% to a+ 10%.

For this b, then, the model-free algorithm generalizes primarily to nearby allocations, those

within ten percentage points of the chosen allocation. We later examine the sensitivity of our

results to the value of b.12

While we are applying model-free learning in one particular setting, it can be used in a

wide range of environments. It can handle any objective function of the form in (1); a complex

set of actions, including, for example, allocations to multiple assets; and a rich state structure.

One question that arises in the case of multiple assets is whether the investor’s allocation

under model-free learning depends on the specific action space. Consider a financial market

with two risky assets, A and B, and denote a 50:50 mix of the two assets as the “market

portfolio.” If aA, aB, and aM are the investor’s allocations to the two risky assets and to the

market, respectively, we can ask if the investor’s allocations to the two assets under model-free

learning depend on whether the action space is {aA, aB}, {aA, aM}, or {aB, aM}. In Internet

Appendix B, we show that the answer is no: at each point in time, the investor’s allocations

to assets A and B are identical across the three action spaces.

The decision problem we study here brings to mind the analysis of multi-armed bandits in

the field of operations research. In bandit problems, an individual must choose among various

options to maximize expected reward; for each option, he does not know the distribution of

outcomes and can learn it only by trying the option and observing the outcome. Research

on these problems has focused on developing algorithms to guide decision-making, and on

proving results about the efficacy of these algorithms (Lattimore and Szepesvari, 2020). In

Section 5.1, where we examine more fully rational versions of model-free learning, we will draw

interpolation-based Q-learning (Szepesvari, 2010, Ch. 3.3.2). Computer scientists also use more sophisticated
forms of generalization such as function approximation with polynomial, Fourier, or Gaussian basis functions
(Sutton and Barto, 2019, Ch. 9). We have also implemented this more complex generalization and obtain
similar results.

12One interpretation of our generalization algorithm is that the model-free system uses a small amount of
“model” information, namely that similar allocations lead to similar portfolio returns; as such, after observing
the outcome of a 70% allocation, the system updates the Q value of an 80% allocation more than that of a 20%
allocation. An alternative interpretation – a strictly model-free interpretation that uses no information about
the structure of the task – is that the generalization is based simply on numerical similarity: the number 70
is closer to 80 than to 20.

16



inspiration from these algorithms. In Sections 2 to 4, however, where our focus is explaining

observed behavior, we root our analysis in psychology research and specifically in algorithms

that, based on neural evidence, the brain actually appears to use.

2.3 Model-based learning

Current research in psychology uses a framework in which decisions are guided by both model-

free and model-based learning. Model-based systems, as their name indicates, build a model

of the environment, which, more concretely, means a probability distribution over future

outcomes – for example, in our setting, a probability distribution over stock market returns.

There are various possible model-based systems. Which one should we adopt? Our goal in

this paper is to see if algorithms commonly used by psychologists can explain behavior in

economic settings. We therefore take as our model-based system one that, like the model-free

system of Section 2.1, is based on an algorithm that is used extensively by psychologists and

is supported by neural evidence from decision-making experiments.

In our model-based system, an investor learns the distribution of stock market returns

over time by observing realized market returns. At each date, he updates the probabilities of

different returns using a prediction error analogous to the reward prediction error of Section

2.1. Specifically, suppose that the investor observes a stock market return Rm,t+1 = R at time

t + 1 and that, at time t, before observing the return, the prior probability he assigned to it

occurring was pt(Rm = R). At time t+ 1, he updates the probability of this return as

pt+1(Rm = R) = pt(Rm = R) + αMB
t [1− pt(Rm = R)], (15)

where αMB
t is the model-based learning rate that applies from time t to time t+ 1. The term

1 − pt(Rm = R) is a prediction error: the investor’s prior estimate of the probability of the

return equaling R was pt(Rm = R); when the return is realized, the probability of it equaling R

is one. Intuitively, after an outcome occurs, the model-based system increases the probability

it assigns to that outcome. After this update, the investor scales the probabilities of all

other returns down by the same proportional factor so that the sum of all return probabilities

continues to equal one. Since we are working with a continuous return distribution, we can

assume that each return that is realized is one that has not been realized before. As such,
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pt(Rm = R) = 0, which simplifies (15) to

pt+1(Rm = R) = αMB
t .

To illustrate this process, suppose that the investor observes four stock market returns in

sequence: Rm,1, Rm,2, Rm,3, and Rm,4, at dates 1, 2, 3, and 4, respectively. The four rows

below show the investor’s perceived probability distribution of stock market returns at dates

1, 2, 3, and 4, in the case where the learning rate is constant over time, so that αMB
t = α

for all t. In this notation, a comma separates a return from its perceived probability, while

semicolons separate the different returns:

(Rm,1, 1)

(Rm,1, 1− α;Rm,2, α)

(Rm,1, (1− α)2;Rm,2, α(1− α);Rm,3, α)

(Rm,1, (1− α)3;Rm,2, α(1− α)2;Rm,3, α(1− α);Rm,4, α). (16)

In this case of a constant learning rate, the model-based system generates a form of extrap-

olative beliefs: the investor’s expected stock market return at any moment puts weights on

past returns that are positive and that decline for more distant past returns.

The above approach is motivated by research in decision neuroscience that adopts a similar

model-based system (Glascher et al., 2010; Lee, Shimojo, and O’Doherty, 2014; Dunne et al.,

2016). Just as there is evidence that the brain encodes the reward prediction error used by

model-free learning, so there is evidence that it encodes the prediction error used by model-

based learning.13

We noted in Section 2.1 that, when they implement model-free learning, psychologists

allow for different model-free learning rates, αMF
+ and αMF

− , for positive and negative reward

prediction errors, respectively. Although it is not necessary for the applications we discuss

later, for the sake of psychological realism, we extend the model-based algorithm in a similar

way, allowing for different model-based learning rates, αMB
+ and αMB

− , for positive and negative

13While our model-based algorithm is inspired by research in psychology, it is also similar to an existing
economic framework, namely adaptive learning (Evans and Honkapohja, 2012). As such, from the perspective
of economics, the novel elements of our framework are the model-free system and its interaction with its
model-based counterpart.
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net stock market returns, respectively. Specifically, following the gross return Rm,t+1 = R,

pt+1(Rm = R) = αMB
t,+ for R > 1, (17)

with the probabilities of all other returns being scaled down by 1− αMB
t,+ , and

pt+1(Rm = R) = αMB
t,− for R ≤ 1, (18)

with the probabilities of all other returns being scaled down by 1−αMB
t,− . The different learning

rates can be thought of as reflecting a different level of attention to, or a different level of

concern about, positive as opposed to negative outcomes (Kuhnen, 2015).

With this perceived return distribution in hand, how does the investor come up with a

model-based estimate of Q∗(a), the value of choosing an allocation a on some date and then

continuing optimally thereafter? We again follow an approach taken by experimental studies

in decision neuroscience (Glascher at al., 2010). We assume that, for any allocation a, the

individual computes his time t model-based estimate of Q∗(a), denoted QMB
t (a), by taking

the correct form of Q∗(a) in equation (12) and applying it for his perceived time t return

distribution:

QMB
t (a) = Ep

t log((1− a)Rf + aRm,t+1) +
γ

1− γ
Ep

t log((1− a∗t )Rf + a∗tRm,t+1), (19)

where

a∗t = argmax
a

Ep
t log((1− a)Rf + aRm,t+1) (20)

and where (19) differs from (12) only in that the expectation E under the correct distribution

has been replaced by the expectation Ep
t under the investor’s perceived distribution at time t.

While our financial setting is a simple one, it is rich enough to create a tension between the

model-free and model-based systems. If the investor starts with a low allocation to the stock

market and the market then posts a high return, the model-free system wants to stick with

a low allocation because this action was “reinforced”: it was followed by a positive reward

prediction error. In intuitive terms, since the investor’s action is “working,” there is no need

to change it. By contrast, the model-based system wants to increase the investor’s allocation

to the stock market: it now perceives a more attractive distribution of market returns and
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wants more exposure to it. We explore the implications of this tension in Section 3.

Charness and Levin (2005) provide experimental evidence for model-free learning in a

setting that exhibits a similar tension to the one we just described. In this setting, there are

two possible actions, “Left” and “Right.” If, after action “Left,” the participant receives a

reward, this coincides with receiving a signal that, in the next period, it is better to switch

to action “Right.” And yet, in nearly half of all decisions, participants stick with “Left,” the

action that was rewarded in the first period – behavior that is very consistent with model-free

learning.14

The model-free and model-based systems are not the only learning algorithms the brain

uses. Another important class of algorithms are “observational learning” algorithms which

learn by observing the actions and outcomes of other people (Charpentier and O’Doherty,

2018). There is also some evidence for “counterfactual learning” algorithms which learn

about the value of actions not taken. We focus on the model-free and model-based algorithms

because they have received the most attention from cognitive scientists and, to date, have the

largest body of neural evidence in their favor; because they likely “span” other algorithms,

in that these other learning systems tend to generate predictions that lie somewhere between

those of the model-free and model-based systems; and because these other algorithms are not

necessary for our purpose: as we show in Section 4, a simple combination of model-free and

model-based learning alone accounts for several important aspects of investor behavior.

2.4 A hybrid framework

An influential framework in psychology posits that people make decisions using a combination

of model-free and model-based systems (Daw, Niv, and Dayan, 2005; Glascher et al., 2010;

Daw et al., 2011). Specifically, it proposes that, at each time t, and for each possible action

a, an individual computes a “hybrid” estimate of Q∗(a), denoted QHY B
t (a), that is a weighted

average of the model-free and model-based Q values:

QHY B
t (a) = (1− w)QMF

t (a) + wQMB
t (a), (21)

14As described in Internet Appendix A, another experimental setting that generates this tension between
model-free and model-based learning is the two-step task; there, too, there is strong evidence for model-free
learning.
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where w is the weight on the model-based system. He then chooses an action using the softmax

approach, now applied to the hybrid Q values:

p(at = a) =
exp[βQHY B

t (a)]∑
a′ exp[βQ

HY B
t (a′)]

. (22)

In this paper, we focus on the case where w is constant over time, as this already leads

to a rich set of properties and applications. Research in psychology is actively exploring the

idea that w varies over time. One hypothesis is that, at each moment, the brain puts more

weight on the system it deems more “reliable” at that point (Daw, Niv, and Dayan, 2005).

While there is evidence to support this idea, there is as yet no consensus on it, so we do not

pursue it further for now.15

The model-free and model-based systems differ most fundamentally in how they estimate

the value of an action: one system uses a model of the environment, while the other does not.

However, there is another difference between them: the model-free system learns only from

experienced rewards, while the model-based system can learn from all observed rewards. In

our setting, the investor enters financial markets at time 0. Time 0 is therefore the moment at

which he starts experiencing returns and hence the moment at which the model-free system

begins learning. However, before he makes a decision at time 0, the investor can look at

historical charts and observe earlier stock market returns, which the model-based system can

then learn from. To incorporate this, we extend the timeline of our framework so that it

starts not at time 0 but L dates earlier, at time t = −L. While the model-free system starts

operating at time 0, the model-based system starts operating at time −L: it observes the L

stock market returns prior to time 0, {Rm,−L+1, . . . , Rm,0}; uses these to form a perceived

distribution of market returns as in (17) and (18); and then computes model-based Q values

by way of that distribution, as in (19).16

15The model-free and model-based learning framework is not without critics. For example, Feher da Silva
et al. (2023) question a subset of the evidence for the framework. However, they do not offer a concrete
alternative, and the model-free and model-based learning framework continues to be the leading approach to
thinking about a large body of both behavioral and neural evidence.

16Our implementation here is consistent with evidence from decision neuroscience. Dunne et al. (2016)
conduct an experiment in which participants actively experience slot machines that deliver a stochastic reward,
but also passively observe other people playing the slot machines. fMRI measurements show that, as in many
other studies, the model-free reward prediction error for the experienced trials is encoded in the ventral
striatum. However, for the trials that are merely observational, the model-free RPE is not encoded in the
striatum, suggesting that the model-free system is not engaged. As Dunne et al. (2016) write, “It may be that
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In Internet Appendix C, we present an example to illustrate the mechanics of the model-

free and model-based systems. Specifically, Table A1 shows the Q values that each of an

investor’s model-free and model-based systems assigns to the 11 possible stock market alloca-

tions {0%, 10%, . . . , 90%, 100%} over the investor’s first six dates of participation in financial

markets. Even from a quick glance at the table, we see a key difference between the two

systems: at each time, the model-free system primarily updates only the Q value of the most

recently-chosen action, while the model-based system updates all 11 Q values based on its

currently-perceived stock market return distribution.

3 Properties of Investor Behavior

In this section, we study the properties of investor behavior when investors make decisions

according to the framework of Section 2. Our focus is on how the allocations recommended

by the model-free and model-based systems depend on past stock market returns. In Section

4, we build on this analysis to account for several facts about investor behavior.

We use the timeline previewed at the end of the previous section. There are L + T + 1

dates, t = −L,. . . , −1, 0, 1,. . . , T . Investors begin actively participating in financial markets

at time 0. Their model-free systems therefore start operating only at time 0, while their

model-based systems operate over the full time range, starting from t = −L. We think of

each time period as one year and set L = T = 30. Before they start investing at time 0,

then, people have access to 30 years of prior data going back to t = −30. We then track their

allocation decisions over the next 30 years, from t = 0 to t = 30.17,18

At each date, we allow the investor to choose his stock market allocation at from one of

11 possible allocations {0%, 10%, . . . , 90%, 100%}. Later in this section, we also consider finer

and coarser versions of this allocation set; and in Section 5.5, we consider alternative action

spaces – for example, one where the investor chooses the number of shares of the stock market

the lack of experienced reward during observational learning prevents engagement of a model-free learning
mechanism that relies on the receipt of reinforcement.”

17One interpretation of our annual implementation is that, as argued by Benartzi and Thaler (1995), in-
vestors pay particular attention to their portfolios once a year – at tax time, or when they receive their
end-of-year brokerage statements. Another interpretation is that it is an approximation of a higher-frequency
implementation. Later in this section, we explain how our results are affected by the choice of frequency.

18Since our setting has an infinite horizon, investors continue to participate in financial markets beyond
date T . Date T is simply the date at which we stop tracking their allocation decisions.
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that he wants to hold.

The four learning rates – αMF
+ , αMF

− , αMB
+ , and αMB

− – play an important role in our

framework. How should they be set? If we were taking a normative perspective – if we

wanted to use the algorithms of Section 2 to solve the problem in (7) as efficiently as possible

– the answer would be to use learning rates that decline over time. Specifically, the time t

model-based learning rates in (17) and (18) would be

αMB
t,+ = αMB

t,− = 1/(L+ t+ 1), (23)

as these lead investors to equally weight all past returns, consistent with the i.i.d. return

assumption. Similarly, Watkins and Dayan (1992) show that, for Q-learning to converge to

the correct Q∗ values, declining model-free learning rates are needed that, for each action a,

satisfy
∞∑
t=0

αMF
t,± 1{at=a} = ∞ and

∞∑
t=0

(αMF
t,± )21{at=a} < ∞, (24)

where the indicator function identifies periods where the algorithm is taking action a.

In this paper, however, we are taking a “positive” perspective – our goal is to explain

observed behavior. What matters for our purposes is therefore not the learning rates people

should use, but rather the learning rates they actually use. Psychology research does not offer

definitive guidance on people’s learning rates, but most studies of actual decision-making use

learning rates that are constant over time (Glascher et al., 2010); moreover, the recorded

activity of neurons that encode the reward prediction error is consistent with a constant

learning rate (Bayer and Glimcher, 2005). For this reason, we focus on constant learning

rates. To start, we give all investors the same learning rates. Later, we allow for dispersion

in these rates across investors.19

We now analyze a property of our framework that is central to the applications in Section

4, namely, how the stock market allocations recommended by the model-free and model-based

systems depend on past stock market returns.

To study this, we take 300, 000 investors and expose each of them to a different sequence of

simulated stock market returns from t = −L to t = T . We then take investors’ stock market

19One reason why the human learning system would use constant learning rates is that these are well-suited
to the non-stationary environments that humans often encountered during the evolutionary process.
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allocations aT at time T , regress them on the past 30 annual stock market returns {Rm,T ,

Rm,T−1,. . . ,Rm,T−29} the investors have been exposed to, and record the coefficients. We do

this for three cases, namely those where investor allocations are determined by the model-free

system alone; by the model-based system alone; and by the hybrid system.20

We start by illustrating our results for one particular parameterization of our framework.

We will then show that the observed pattern is very robust, in that it also emerges for a

wide range of other parameterizations. For the specific parameterization we start with, the

parameter values are as follows. As above, L = T = 30. Investors’ learning rates are set to

αMF
± = αMB

± = 0.5. The exploration parameter β is 30; in simulations, we find that, for this

value of β, an investor using the hybrid system chooses the allocation with the highest Q value

approximately half the time, which represents a moderate degree of exploration. We set the

discount factor γ to 0.97 – this corresponds to an expected investment horizon of 33 years –

and we simulate stock market returns from the distribution in (6) with µ = 0.01 and σ = 0.2;

these values provide an approximate fit to historical annual stock market returns. For ease of

interpretation, we turn off generalization for now, so that b = 0.21 Finally, we set w = 0.5, so

that the hybrid system puts equal weight on the model-free and model-based systems.22

Figure 1 presents the results. The solid line plots the coefficients on past returns in the

above regression when allocations are determined by the model-based system. As we move

from left to right, the line plots the coefficients on more distant past returns: the point on the

horizontal axis that marks j years in the past corresponds to the coefficient on Rm,T+1−j. The

two other lines plot the coefficients for the model-free and hybrid systems.

The figure shows that, for both the model-free and model-based systems, the time T stock

20In the case where decisions are determined by the model-based system alone, we assume that the investor
still chooses actions probabilistically, in a manner analogous to that in (11). In our setting, for the model-
based system, this probabilistic choice does not offer the usual exploration benefits: in each period, the investor
learns the same thing about the distribution of stock market returns regardless of which allocation he chooses.
We keep the probabilistic choice to allow for a more direct comparison with the model-free system – but also
because, if, as suggested earlier, this stochastic choice stems in part from Luce-style random utility, it will be
relevant for model-based learning too. For these reasons, whenever we consider the model-based system in
isolation, we will allow for probabilistic choice.

21We use “b = 0” as shorthand for model-free learning without generalization. When b = 0, we compute
model-free Q values using equation (10) rather than equations (13)-(14), although the latter equations give
the same result as b → 0.

22The goal function in (7) is motivated in part by the idea that, due to liquidity shocks, some investors drop
out of financial markets over time. In our calculations, we do not explicitly track which investors drop out.
This is because the shocks are random: they do not depend on investors’ prior allocations or past returns. As
such, investor exits do not affect the properties or predictions that we document.
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market allocations depend positively on past returns, and more so on recent past returns: the

coefficients on past returns decline, the more distant the past return. Importantly, the decline

is much more gradual for the model-free system, leading this system to put much more weight

on distant past returns than the model-based system does, a property that will play a key

role in some of our applications. Given that the hybrid system combines the model-free and

model-based systems, it is natural that the line for the hybrid system is, approximately, a mix

of the model-free and model-based lines.

The pattern in Figure 1 holds robustly in our framework. We demonstrate this both numer-

ically and analytically. In our numerical analysis, we consider 150 different parameterizations

of our framework. Each parameterization corresponds to a set of parameter values {α, β, γ, w},
where the values of the four parameters are drawn from α ∈ {0.2, 0.35, 0.5, 0.65, 0.8}, β ∈
{10, 30, 50}, γ ∈ {0.3, 0.6, 0.9, 0.97, 0.99}, and w ∈ {0, 1}, and where α determines the values

of all four learning rates αMF
± and αMB

± . Half of these parameterizations correspond to model-

free learning (w = 0) and half to model-based learning (w = 1). The remaining parameters

are set to L = T = 30, µ = 0.01, σ = 0.2, and b = 0. For each of the 150 parameterizations,

we repeat the analysis in Figure 1: we take 300,000 investors who make decisions according to

our framework, regress their time 30 allocations on the past 30 years of stock market returns,

and record the 30 coefficients. To see if these coefficients are positive on average, we compute

their mean value; and to see if they are declining, we fit them to the exponential function

Ce−δ(T−t), where C is a scaling factor, t is the year a particular coefficient corresponds to, and

δ > 0 signifies coefficients that decline, the further back we go in time.

We find that, among the 75 model-based parameterizations with w = 1, all 75 exhibit

coefficients with a positive mean that decline the further back we go in time. The same holds

for 73 of the 75 model-free parameterizations with w = 0. Very robustly, then, the allocations

recommended by the model-free and model-based systems put weights on past stock market

returns that are positive and decline as we go further into the past. It is also robustly true

that the decline in the coefficients is much more pronounced for the model-based system.

Across the 75 model-based parameterizations, the average value of δ is 0.79, which is much

higher than the average value of δ across the 75 model-free parameterizations, namely 0.07.

Moreover, if, for each model-based parameterization {α, β, γ, w = 1}, we match it to the

analogous model-free parameterization {α, β, γ, w = 0}, then, in all 75 cases, the estimated
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δ for the model-based parameterization is higher than the estimated δ for the model-free

parameterization.

We also confirm the robustness of the pattern in Figure 1 analytically. In Section 5.3 and

Internet Appendix F, in a simplified version of our framework, we prove that, for both the

model-free and model-based systems, the allocations put weights on past stock market returns

that are positive and decline as we move further into the past, and that the decline is much

faster in the case of the model-based system.

What is the intuition for the pattern in Figure 1? First, we explain why the allocations

recommended by the model-free and model-based systems depend positively on past returns.

The answer is clear in the case of the model-based system. Following a good stock market

return, an investor’s perceived distribution of market returns assigns a higher probability to

good returns and a lower probability to bad returns. This raises the model-based Q values of

all stock market allocations, but particularly those of high allocations, making it more likely

that the investor will choose a high allocation going forward.

The intuition in the case of the model-free system is quite different. If the investor chooses

a 20% stock market allocation and the market posts a high return, this “reinforces” the choice

of a 20% allocation: the positive reward prediction error raises the Q value of this allocation,

making it more likely that the investor will choose it again in the future. Similarly, if he chooses

an 80% allocation and the market posts a high return, this reinforces the 80% allocation. In

one case, then, a high market return makes the investor want to persist with a low allocation;

in the other, it makes him want to persist with a high allocation. Why then, on average, does

a high market return lead to a higher allocation, as shown by the dashed line in Figure 1?

The reason is that the reinforcement is stronger in the case of the 80% allocation: a high stock

market return leads to a larger reward prediction error, and hence more reinforcement, when

the investor’s prior allocation is 80% than when it is 20%. As such, the net effect of a good

stock market return, after averaging over the possible prior allocations, is to lead the investor

to choose a high stock market allocation going forward.

We now explain why the weights that the two systems put on past market returns decline

as we go further into the past. In the case of the model-based system, this is because, when

this system updates its perceived return distribution after seeing a new stock market return,

it scales down the probabilities of earlier returns, reducing their importance. Intuitively, by
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using a constant learning rate, the investor is acting as if the environment is non-stationary;

as such, he puts greater weight on recent returns. The top graph in Figure 2 shows how the

time T allocation recommended by the model-based system depends on past stock market

returns for four different values of the learning rates αMB
+ and αMB

− , namely 0.05, 0.1, 0.2,

and 0.5. The graph shows that, regardless of the learning rate, the allocation puts weights on

past returns that are positive and that decline the further back we go into the past, with the

decline being more pronounced for higher learning rates.

Figure 1 shows that, for the model-free system, the weights on past returns again decline

as we go further into the past, but much more gradually. Why is this? When the model-

free system updates the Q value of an action, this tends to downweight the influence of past

returns on this Q value, relative to the most recent return. However, this effect passes through

to allocation choice in a much more gradual way than for the model-based system because,

at each time, the model-free system primarily updates only one Q value, that of the most

recently-chosen action; as such it takes much longer for past returns to lose their influence

on the investor’s allocation.23 The bottom graph in Figure 2, which plots the relationship

between the model-free allocation and past returns for four different values of the learning

rates αMF
+ and αMF

− , shows that the model-free allocation typically puts positive and declining

weights on past returns, with the decline being more pronounced for higher learning rates.

A common assumption in psychology-based models of investor behavior is that some in-

vestors have extrapolative demand: their demand for a financial asset depends positively on

the asset’s past returns, and especially so on its recent past returns.24 The results in this

section show that each of the model-based and model-free systems can provide a foundation

for extrapolative demand. The model-based system does so in a way that is similar to that

of existing models, in particular, models of extrapolative beliefs: following a sufficiently good

stock market return, the investor perceives a higher expected market return going forward,

23For an example, consider the upper panel of Table A1 in Internet Appendix C. At time 4, the model-free
system updates the Q value of the 30% allocation. However, the Q value of a 70% allocation is not significantly
updated at this time, and so it depends as strongly as before on the time 1 stock market return. As such, for
the model-free system, the time 1 and time 4 stock market returns exert a similar degree of influence on the
investor’s allocation at time 4.

24A partial list of papers that study extrapolative demand, either theoretically or empirically, is Cutler,
Poterba, and Summers (1990), De Long et al. (1990), Barberis and Shleifer (2003), Barberis et al. (2015,
2018), Cassella and Gulen (2018), Chen, Liang, and Shi (2022), Jin and Sui (2022), Liao, Peng, and Zhu
(2022), Bastianello and Fontanier (2025), and Pan, Su, Wang, and Yu (2025).
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and so chooses a higher allocation to the market.

The model-free system also provides a foundation for extrapolative demand – the allocation

it proposes typically puts positive and declining weights on past returns – and does so in a way

that is new to the finance literature. While it is common to think of extrapolative demand

as stemming purely from beliefs, the model-free mechanism shows that it need have nothing

to do with beliefs: beliefs about future outcomes play no role in model-free learning. Going

further, our framework says that extrapolative demand has two sources: a model-based source

derived from beliefs that puts heavy weight on recent returns, and a model-free source that

puts substantial weight even on distant past returns. We exploit this structure in Sections 4.1

and 4.2 to shed light on some puzzling disconnects between allocations and beliefs.

We end this section with some additional comparative statics that show the rich impli-

cations of model-free learning. The graphs in Figure 3 show how the relationship between

investors’ time-T model-free allocations and past stock market returns changes as we vary

one of the parameters while keeping the others at their benchmark levels. Across the four

graphs, we vary the degree of generalization, the degree of exploration, the discount factor,

and the number of allocation choices. Changing these parameters would have little effect on

model-based allocations. However, Figure 3 shows that it has significant impact on model-free

allocations. Earlier in this section, we saw that, for a wide range of parameterizations, the

model-free allocation puts more weight on recent returns than on distant past returns. Figure

3 shows that, for a few parameterizations – those with a high degree of generalization or a

low degree of exploration – the opposite can be true: the model-free allocation can put more

weight on distant than on recent past returns. We explain the full intuition for the patterns

in Figure 3 in Internet Appendix D.25

4 Applications

In this section, we show that our framework can shed light on a number of important empirical

facts in finance. This is striking, for two reasons. First, in prior research, this framework has

25The results in Figures 1 to 3 are for an annual-frequency implementation of our framework. We have
studied the effect of changing the frequency. If we fix the learning rates αMB

± and αMF
± but switch to a

semi-annual, quarterly, or monthly implementation, this has a significant effect on the model-based allocation
– it depends all the more on recent returns – but a much smaller impact on the model-free allocation. As
such, implementing the framework at a higher frequency creates a larger wedge between the two systems.
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been used primarily to explain behavior in simple experimental settings; it is notable, then,

that it can also account for real-world financial behavior. Second, one component of the

framework is “model-free,” and, as such, uses very little information about the nature of

the task. It is striking that a framework that “knows” so little about financial markets can

nonetheless help explain investor behavior in these markets.

We have associated the risky asset in our framework with the aggregate stock market.

Our applications therefore focus on important facts about this market – facts about investor

allocations, investor beliefs, and the relationship between the two. To study the various appli-

cations, we start with the setup of Section 3. There are again L+T +1 dates, t = −L,. . . ,−1,

0, 1,. . . , T . Relative to Section 3, we make two modifications to make the framework more

realistic. First, we allow for dispersion in learning rates across investors. Second, we allow for

different cohorts of investors who enter financial markets at different times. Specifically, we

take L = T = 30 and consider six cohorts, each of which contains 50, 000 investors, for a total

of 300, 000 investors. The first cohort begins participating in financial markets at time t = 0;

we track their allocation decisions until time t = T . For these investors, their model-based

systems operate over the full timeline starting at time t = −L, but their model-free systems

operate only from time t = 0 on. The second cohort enters at time t = 5; we track them until

time t = T . For this cohort, the model-based system again operates over the full timeline

starting at t = −L, but the model-free system operates only from time t = 5 on. The four

remaining cohorts enter at dates t = 10, 15, 20, and 25.

Given the above structure, at time T , the cross-section of investors resembles the one we

see in reality, namely one where investors differ in their number of years of participation in

financial markets. As such, most of our analyses will focus on investor allocations at time

T and on how these relate to other variables, such as investor beliefs at that time or the

past stock market returns investors have been exposed to. For each application, we conduct

simulations in which each investor interacts with a different return sequence from time t = −L

to time t = T .

In Sections 4.1 to 4.5, we discuss five applications of our framework. To convey the idea

behind an application, we will often start by illustrating it for a specific parameterization,

which will remain fixed throughout Section 4. In this parameterization, each of the 300,000

investors in the economy is trying to solve the problem in (7) and chooses allocations from the
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set {0%, 10%,. . . , 90%, 100%} according to the hybrid system in (21)-(22). For each investor,

we draw the values of the learning rates αMF
+ , αMF

− , αMB
+ , and αMB

− independently from a

uniform distribution with mean ᾱ and width ∆. The specific parameter values are ᾱ = 0.5,

β = 30, γ = 0.97, ∆ = 0.5, µ = 0.01, σ = 0.2, b = 0.0577, and w = 0.5, so that investors put

equal weight on the model-free and model-based systems.

Importantly, for each of the five applications we discuss, after first illustrating it for the

above specific parameterization, we then show that it emerges robustly from our frame-

work – in other words, that it holds for a wide range of parameterizations. To do this,

we consider 600 different parameterizations of our framework, each one corresponding to a

set of parameter values {ᾱ,∆, β, b, w}, where the value of each parameter is drawn from

ᾱ ∈ {0.2, 0.35, 0.5, 0.65, 0.8}, ∆ ∈ {0, 0.4}, β ∈ {10, 30, 50}, b ∈ {0, 0.0577, 0.115, 0.23}, and
w ∈ {0, 0.25, 0.5, 0.75, 1}. The remaining, less pivotal parameters are kept fixed at the values

γ = 0.97, µ = 0.01, and σ = 0.2. We then compute the fraction of these 600 parameterizations

for which we observe the application in question. Note that each of the five values of w – recall

that w is the weight on the model-based system – corresponds to 120 parameterizations. To

show that a particular application emerges more strongly when the model-free system plays a

larger role, we will also compute, for each value of w, the fraction of the 120 parameterizations

associated with it for which the application holds.

4.1 Allocations and beliefs: The frequency disconnect

Our framework can help to resolve two puzzling disconnects between investor beliefs and

investor actions – one in the frequency domain, which we discuss in this section, and one in

the cross-section of investors, which we address in the next section. We account for these

puzzles by way of a deep property of our framework, namely that, of the two systems, only

the model-based system has an explicit role for beliefs. The model-free system, by contrast,

has no notion of beliefs: it does not construct a probability distribution over future outcomes;

instead, it learns the value of actions simply by trying them and observing the outcomes.

The disconnect in the frequency domain is simple to state. For individual investors, and

for some financial professionals, beliefs about future stock market returns depend heavily on

recent past returns: following a year or two of high returns, these investors expect high returns

in the future as well (Greenwood and Shleifer, 2014). By contrast, investor allocations to the
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stock market depend to a substantial extent even on distant past returns (Malmendier and

Nagel, 2011).26

How does our framework capture this disconnect? When an investor is asked for his beliefs

about future stock market returns, he necessarily consults the model-based system – the only

system that can answer the question – and gives a response that puts heavy weight on recent

returns: in Section 3, we saw that, with a constant learning rate, the beliefs generated by

the model-based system are strongly influenced by recent returns. However, the investor’s

allocation is determined by both the model-based and model-free systems, and, as shown in

Section 3, the model-free system puts substantially more weight on distant past returns than

the model-based system does. In this way, our framework creates a wedge between actions

and beliefs: allocations depend more heavily on distant past returns than beliefs do.

Figure 4 illustrates these points. For the specific parameterization described above, the

solid line shows how allocations depend on past returns: it plots the coefficients in a regression

of investors’ allocations to the stock market at time T on the past 30 years of stock market

returns they were exposed to. This solid line is similar to the line marked “hybrid” in Figure

1 in that both lines correspond to decisions made under the hybrid system. However, the

two lines differ because, relative to the analysis in Section 3, we are now allowing for multiple

cohorts and for dispersion across investors in their learning rates. The multiple cohorts in

particular make the solid line in Figure 4 decline more quickly than the “Hybrid” line in

Figure 1: some of the investors in the market at time T = 30 entered only at time 25; as such,

their model-free system puts no weight on returns before time 25.

The dashed line in Figure 4 shows how beliefs depend on past returns: it plots the coef-

ficients in a regression of investors’ expectations at time T about the future one-year stock

market return on the past 30 years of stock market returns they were exposed to. Comparing

the two lines, we see that, while beliefs depend primarily on recent returns, allocations depend

significantly even on distant past returns.

We now show that this frequency disconnect is a robust implication of our framework. For

26We formalize this in the following way. Malmendier and Nagel (2011) use the normalized weights (n +
1− j)λ/A to characterize the relationship between the allocation of an investor with n years of experience and
the return he experienced j years earlier. They obtain an estimate of λ ≈ 1.3. Suppose that we now take the
same functional form and use it, with n = 30, to characterize the relationship between investor beliefs and the
past 30 years of stock market returns. Using Gallup data on stock market expectations from October 1996 to
November 2011, we find that the best fit is for λ ≈ 37, which puts far more weight on recent returns.
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each of the 600 parameterizations described at the start of Section 4, we repeat the exercise

in Figure 4. We take 300,000 investors in six cohorts who make their decisions at each time

according to the hybrid system. We regress their allocations at time 30 on the past 30 years of

stock market returns each investor was exposed to, and fit the 30 coefficients to the functional

form Cae
−δa(T−t). We also take investors’ time-30 beliefs about the future stock market return,

regress them on the past 30 years of stock market returns, and fit the 30 coefficients to the

functional form Cbe
−δb(T−t).We define a frequency disconnect as δa < δb, so that beliefs depend

more heavily on recent returns than allocations do.

Recall that, of the 600 parameterizations, 480 put at least some weight on the model-free

system, so that w < 1.We find that δa < δb for every single one of these 480 parameterizations.

As such, the frequency disconnect is a very robust prediction of our framework when the model-

free system is engaged. The top-left graph in Figure 5 plots, for each of the five values of w

we consider, the average value of δb − δa across the 120 parameterizations corresponding to

that w. The figure shows that the frequency disconnect becomes larger as w falls, in other

words, as the investor puts more weight on the model-free system.

4.2 Insensitivity of allocations to beliefs

Using survey responses from Vanguard investors, as well as data on these investors’ allocations

to the stock market, Giglio et al. (2021) document another disconnect between beliefs and

actions. Regressing investors’ stock market allocations on investors’ expected one-year stock

market returns, they obtain a coefficient approximately equal to one. By contrast, a traditional

Merton model of portfolio choice predicts a much higher coefficient. A similar insensitivity

of allocations to beliefs is also documented, using a variety of approaches, by Ameriks et al.

(2020), Charles, Frydman, and Kilic (2024), and Yang (2025).

Our framework can help explain this insensitivity. The mechanism is similar to that for

the frequency disconnect: it again relies on the fact that, while an investor’s allocation is

based on both the model-free and model-based systems, only the model-based system has an

explicit role for beliefs. To see the implications of this, suppose that the stock market posts

a high return. The investor’s expectation about the future stock market return will then go

up significantly: when the learning rate is constant, the beliefs generated by the model-based

system put substantial weight on recent returns. However, the investor’s allocation will be
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less sensitive to the recent return: it is determined in part by the model-free system, which,

relative to the model-based system, puts much less weight on recent returns.

We now examine this effect quantitatively. For each of the 600 parameterizations described

at the start of Section 4, we take 300,000 investors and estimate the sensitivity of their

allocations to their beliefs by running a regression of their time-30 allocations on the return

they expect over the next year at time 30. The top-right graph in Figure 5 reports, for each

of the five values of w we consider, the average sensitivity across the 120 parameterizations

corresponding to that value of w. The graph shows that the sensitivity decreases markedly

as we lower w, in other words, as the model-free system plays a larger role; when w = 1,

the sensitivity is more than five times higher than when w = 0. Moreover, for w = 0.5, the

framework produces an average sensitivity close to that estimated by Giglio et al. (2021).27

4.3 Experience effects

Malmendier and Nagel (2011) show that investors’ decisions are affected by their experience:

whether an investor participates in the stock market, and how much he allocates to the stock

market if he does participate, can be explained in part by the stock market returns he has

personally experienced – in particular, by a weighted average of the returns he has personally

lived through, with more weight on more recent returns.

The framework of Section 2 provides a foundation for such experience effects. Since the

model-free system engages only when an investor is actively experiencing financial markets,

the framework predicts that investors who enter financial markets at different times, and who

therefore experience different returns, will choose different allocations.

There are two key features of experience effects that we aim to capture. The first is that,

if an investor begins participating in financial markets at time t, his subsequent allocations

to the stock market should depend substantially more on the stock market return at time

27The top-right graph in Figure 5 shows that, even when the model-based system alone determines alloca-
tions (w = 1), the framework predicts a relatively low sensitivity of allocations to beliefs. This is because the
investors are limited to allocations between 0% and 100%, even though, under model-based learning, their
extrapolative beliefs often lead them to want to take allocations outside this range. This mechanism is not
driving the low sensitivity generated by the model-free system: only a small fraction of investors choose bound-
ary allocations under model-free learning. Neither is exploration the source of the low model-free sensitivity.
Rather, the low sensitivity under model-free learning is due to the fact that beliefs play no role in model-free
choices.
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t + 1, Rm,t+1 – a return he experienced – than on the stock market return at time t, Rm,t,

a return he did not experience. Put differently, if we plot the coefficients in a regression of

investor allocations on past market returns, we should see a “kink” in the coefficients at the

moment the investor enters financial markets. The second feature of experience effects is that

the coefficients in a regression of investor allocations on past experienced stock market returns

should decline for more distant past returns. To capture both features, Malmendier and Nagel

(2011) propose that investors’ decisions are based on a weighted average of past returns in

which, for an investor at time t with n years of experience, the weight on the return j years

earlier, Rm,t+1−j, is

(n+ 1− j)λ/A, j = 1, 2, . . . , n, (25)

where λ is estimated to be approximately 1.3 and A is a normalizing constant, and where the

weight on returns the investor did not experience is zero.

To see if our framework can generate these two features of experience effects, we proceed

as follows. For the specific parameterization described at the start of Section 4, and for each of

the six cohorts, we take the 50, 000 investors in the cohort and regress their time-T allocations

aT on the past 30 years of stock market returns. Figure 6 presents the results. The six graphs

correspond to the six cohorts. In each graph, the solid line plots the coefficients in the above

regression, normalized to sum to one so that we can compare them to the Malmendier and

Nagel (2011) coefficients in (25). The dashed line plots the functional form in (25) for the

cohort in question, and the vertical dotted line marks the point at which the cohort enters

financial markets.

By comparing the solid and dashed lines for each graph in turn, we see that our framework

can capture both aspects of experience effects. Consider the bottom-left graph for cohort 4

which enters at date 15. The solid line shows that our framework generates a kink in the

dependence of allocations on past market returns as we move from a return these investors

experienced – the return 15 years in the past – to one they did not experience, the return 16

years in the past. The kink is driven by investors’ model-free system, which puts substantial

weight even on a return experienced 15 years in the past, but no weight at all on returns before

that. The graph also shows that, within the subset of returns that these investors experience,

their allocation puts greater weight on more recent past returns. Both the model-free and

model-based systems contribute to this pattern, although the model-based system does so

34



more.

Similar patterns can be seen in the other graphs. In each case, the solid line exhibits a

kink at the moment that the investors in that cohort begin experiencing returns; and within

the subset of returns that the investors in that cohort experience, there is more weight on

more recent returns.

We now confirm that experience effects are a robust feature of our framework, in that we

observe them for a wide range of parameterizations. For each of the 600 parameterizations

described at the start of Section 4, we repeat the exercise in Figure 6: for the 50,000 investors

in each cohort, we regress their time-30 allocations on the past 30 years of stock market

returns, obtaining coefficients {c(k)t }Tt=1 for cohort k ∈ {1, . . . , 6}, and then check whether

we observe an experience effect. To make this precise, note that cohort k enters financial

markets at time τ(k) = 5(k− 1). By experience effect, we mean: (i) that for k = 1, . . . , 6, the

coefficients {c(k)t }Tt=τ(k)+1 are on average positive and decline as we go further into the past,

in the sense that, if we fit the coefficients to the functional form Ck exp(−δ(k)(T − t)), then

δ(k) > 0; and (ii) that for k = 2, . . . , 6, c
(k)
τ(k)+1 > c

(k)
τ(k) and c

(k)
τ(k)+1 − c

(k)
τ(k) > c

(k)
τ(k)+2 − c

(k)
τ(k)+1, so

that the coefficients jump up at the time of entry more than they do in the period immediately

after entry, thereby creating kinks like those in Figure 6.

The middle-left graph in Figure 5 plots, for each of the five values of w we consider,

the fraction of the 120 parameterizations corresponding to that w for which we observe an

experience effect. The figure shows that, for w = 1, when there is no model-free learning,

none of the 120 parameterizations exhibits an experience effect. However, when w < 1, so

that model-free learning plays a role, an experience effect is observed much more frequently;

for example, when w = 0.5, this is almost always the case. When w = 0, so that there is only

model-free learning, an experience effect is less frequent than when w = 0.5. The reason is

that, as shown in Figure 3, for a few parameterizations, the model-free allocation can depend

more on distant past returns than on recent returns; as such, condition (i) above is sometimes

violated.28

28Model-free learning is one possible psychological foundation for experience effects, but there are others;
see Malmendier and Wachter (2024) for a discussion.
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4.4 Inertia

There is substantial inertia in households’ allocations to the stock market over time (Agnew,

Balduzzi, and Sunden, 2003; Ameriks and Zeldes, 2004). This inertia is often attributed to

transaction costs, procrastination, or inattention.

In this section, we show that model-free learning offers a new way of thinking about inertia

in investor holdings: specifically, we show that the model-free system leads to much greater

inertia than the model-based system. To demonstrate this, we take the 600 parameterizations

described at the start of Section 4. For each parameterization, we compute a simple measure

of inertia, namely, the fraction of the 300,000 investors whose allocation at time 30 is the same

as their allocation at time 29. The middle-right graph in Figure 5 plots the average value of

this fraction across the 120 parameterizations that correspond to each of the five values of w

that we consider.

The figure shows that, as w falls, so that model-free learning plays a larger role, the degree

of inertia goes up dramatically. When w = 1, so that investors use only model-based learning,

there is little inertia: investors stick with the same allocation slightly more than 10% of the

time. Since they have extrapolative beliefs, their perceived expected return on the stock

market shifts from one period to the next, leading to a shift in allocations. When w = 0,

so that investors use only model-free learning, the measure of inertia is approximately 40%,

more than three times higher.

The intuition for the greater inertia produced by the model-free system is that, over time,

as an investor tries different allocations, there is a good chance that one of these will be highly

rewarded. The investor is then likely to stick with that allocation going forward. This intuition

is general: in any setting, as an individual tries different actions, one may be rewarded with

a very positive outcome; the individual is then likely to stick with that action. As such,

model-free learning may help to explain inertia in many settings, not just the one we consider

here.

4.5 Dispersion in allocations

Households differ in their asset allocations: the fraction of wealth invested in the stock market

varies substantially from one household to another. Economists typically attribute these
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differing allocations to differences in beliefs – differences in perceived expected returns or risk

– or to differences in objective functions.

In this section, we show that model-free learning offers a new way of thinking about

dispersion in allocations. Specifically, we show that model-free learning leads to a similar

level of dispersion as model-based learning. This is striking because the dispersion induced by

model-free learning cannot be attributed to differences in beliefs or objective functions: the

model-free system has no notion of beliefs, and all investors have the same objective function

in (7).

To explore this, we take the 600 parameterizations described at the start of Section 4 and,

for each one, as a measure of dispersion, compute the cross-sectional standard deviation of

the 300,000 investors’ stock market allocations at time 30. The bottom-left graph in Figure 5

shows, for each of the five values of w that we consider, the average level of dispersion across

the 120 parameterizations that correspond to that value of w.

The graph shows that, when w = 1, so that model-based learning alone guides allocations,

there is substantial dispersion in allocations. This is primarily due to differences in beliefs,

although probabilistic choice also plays a role. Remarkably, when w = 0, so that model-free

learning alone drives choices, we observe a similar level of dispersion.

What drives the dispersion in the case of model-free learning, if not beliefs or objective

functions? It is the process of decision-making itself. The probabilistic choice leads investors

to try different allocations in their early years of financial market participation. Different

allocations are then reinforced for different investors, which leads to differences in allocations

even many years later.

5 Additional Analyses

In this section, we discuss several additional pieces of analysis.

5.1 Rational benchmarks

Our implementation of model-free and model-based learning in Sections 3 and 4 assumes

that each investor uses learning rates that are constant over time. This implies that neither

system is fully rational: for the model-free Q values to converge to the correct Q∗ in (12), a
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declining model-free learning rate is needed, as in (24); similarly, for the model-based Q values

to converge to the correct Q∗, the declining model-based learning rate in (23) is needed. We

use constant learning rates for psychological realism: most of the psychology research that we

draw on uses constant learning rates.

In Internet Appendix E, we examine what happens when we use more rational versions

of model-free and model-based learning that feature declining learning rates. Specifically, we

repeat all of the main analyses in Sections 3 and 4 for two cases.

In the first case, investors use both rational model-free learning and rational model-based

learning. We find that this framework does a poor job capturing the empirical facts. Most

important, in this framework, investor beliefs put equal weight on past stock market returns,

in sharp contrast to survey data where household beliefs depend heavily on recent returns.

This, in turn, means that the framework cannot capture the frequency disconnect and does a

poor job matching experience effects: it is unable to explain why, within the set of returns an

investor has experienced, his allocation puts more weight on recent returns.

We then consider the case where investors use rational model-free learning in combination

with the benchmark model-based learning with constant learning rates. We find that this

framework performs fairly well: while the quantitative match to the data is not as good as

for the implementation in Section 4, it can nonetheless capture experience effects, a frequency

disconnect, insensitivity of allocations to beliefs, inertia, and dispersion in allocations. This

is a striking finding: it shows that the results in Sections 3 and 4 do not hinge on constant

model-free learning rates, but follow even from a more rational version of model-free learning.

5.2 Predictions

The model-free component of our framework makes several predictions, but all of them trace

back to one core prediction, namely that, today, an investor is more likely to take an action

that, in his past experience, was rewarded in the period after he took it. In this section, we

study ways of formulating this prediction so that, given suitable data, it can be tested.

If the model-free system is a significant driver of investor behavior, a good predictor of

the investor’s allocation at time t will be argmaxa Q
MF
t (a), the allocation with the highest

estimated model-free Q value at time t. In the extreme case where the investor uses only the

model-free system, so that w = 0, and there is no exploration, this variable will perfectly
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predict the investor’s allocation.

The difficulty is that, even with data on an investor’s holdings and returns, we do not

observe QMF
t (a), as computed in (13), because we do not know the investor’s values of αMF

±

and γ.We therefore explore ways of approximating QMF
t (a) so that a test can be implemented.

One approach is to construct, for each investor at each time, the 11 quantities {e(1)t (a)},
a = 0%, 10%, . . . , 100%, where

e
(1)
t (a) =

t∑
s=1

1as−1=a logRp,s (26)

if the allocation a has been tried at least once before time t, and e
(1)
t (a) = 0 otherwise. For

each allocation a, this quantity is the sum of the log portfolio returns in the periods after

the investor tried allocation a. The logic is that, if, after trying an allocation a, the investor

experiences a high log portfolio return, this will increase the model-free Q value for that

allocation. As such, a
(1),∗
t = argmaxa e

(1)
t (a) should be a good predictor of the investor’s

allocation at time t.

An alternative approach is to approximate the updating equation (13) more directly. For

each investor, we can define

e
(2)
t (a) = (1− α)e

(2)
t−1 + α(logRp,t + γmax

a′
e
(2)
t−1(a

′)) (27)

if the investor took the action a at time t− 1, and e
(2)
t (a) = e

(2)
t−1(a) otherwise. If we knew the

investor’s values of α and γ, then, generalization aside, e(2)(a) would equal QMF (a). In reality,

we do not know these values. However, one idea is to choose reasonable values of α and γ,

implement (27) using these values regardless of the investor’s actual values of α and γ, and

then check if the resulting a
(2),∗
t = argmaxa e

(2)
t (a) is a good predictor of time-t allocations.

We now examine, in simulated data, whether a
(1),∗
t and a

(2),∗
t are indeed good predic-

tors of allocations. We consider 375 different parameterizations of our framework, each

one corresponding to a set of parameter values {ᾱ, β, γ, w}, where the values are selected

from ᾱ ∈ {0.2, 0.35, 0.5, 0.65, 0.8}, β ∈ {10, 30, 50}, γ ∈ {0.3, 0.6, 0.9, 0.97, 0.99}, and w ∈
{0, 0.25, 0.5, 0.75, 1}. The remaining, less pivotal, parameters are set to L = T = 30, ∆ = 0,

µ = 0.01, σ = 0.2, and b = 0. For each parameterization, we take 300,000 investors in a
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single cohort that enters financial markets at time 0, and, for each investor at each time, we

compute e
(1)
t (·) and e

(2)
t (·), where for e(2)t , we set α = 0.5 and γ = 0.97 regardless of investors’

actual values of these variables. We then run two univariate regressions: one of investors’

time-30 allocations on a
(1),∗
30 = argmaxa e

(1)
30 (a), and one of investors’ time-30 allocations on

a
(2),∗
30 = argmaxa e

(2)
30 (a). We record the R-squared of each regression. After going through

all 375 parameterizations, we compute, for each of the two predictors, the average R-squared

across the 75 parameterizations corresponding to each of the five possible values of w.

The bottom-right graph in Figure 5 plots these average R-squared. The graph confirms

that both a
(1),∗
30 and a

(2),∗
30 have the desired properties. When w = 1, so that the model-

free system plays no role, the variables have essentially no predictive power for allocations.

However, when w = 0, so that the model-free system has exclusive control, the two variables

have significant predictive power. As such, the ability of a
(1),∗
30 and a

(2),∗
30 to predict allocations

is diagnostic of whether model-free learning is actually influencing investor allocations.

The statement “allocations can be predicted by a
(1),∗
30 and a

(2),∗
30 ” goes well beyond the

statement, derived from research on experience effects, that “allocations can be predicted by

investors’ experienced returns.” Since our framework takes a stand on the source of experience

effects, it offers a more structured prediction. Specifically, in our framework, it matters not

only what returns an investor has experienced, but also what the investor’s allocation was

when the returns were experienced. For example, according to traditional experience effects,

an investor who experiences a high stock market return is predicted to then choose a high

allocation to the stock market. In our setting, if it happens that, at the time of the high stock

market return, the investor had a low allocation to the market, he is then predicted to be

comfortable sticking with that low allocation. The predictor variables a
(1),∗
30 and a

(2),∗
30 capture

this mechanism.

To test whether, in reality, model-free learning influences investor behavior, we could

in principle check whether a
(1),∗
t and a

(2),∗
t predict investors’ actual allocations. The data

requirements here are steep: we would need a dataset that tracks a large number of specific

individuals over many years and records their allocations and returns at each time. If such

data become available, the test is implementable.
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5.3 Analytical results

It is challenging to prove analytical results about the properties of our framework. The main

difficulty is that, in contrast to model-based approaches, the model-free system primarily

updates only one Q value in each period, that of the most recently-chosen action.

Nonetheless, we are able to prove some theoretical results, and these go well beyond

anything available in prior research. In a much simplified version of our framework, we prove

that the stock market allocation recommended by each of the model-free and model-based

systems puts weights on past stock market returns that are positive and that decline as we go

further into the past, and that this decline is more pronounced for the model-based system.

This provides an analytical foundation for the simulation-based findings in Section 3. In

the two corollaries that follow, we extend these results to directly address two of our key

applications in Section 4. We prove that model-free learning leads to a lower sensitivity of

allocations to beliefs than does model-based learning. And we prove that model-free learning

generates a frequency disconnect, in that the investor’s beliefs put greater relative weight on

recent returns than his allocations do; model-based learning, by contrast, does not generate a

frequency disconnect.

While we prove the theorems below in a simplified version of our framework, this has an

important advantage: it shows that the applications we discuss in Sections 3 and 4 follow from

the essential feature of our framework – that, after an action is taken, its value is updated

based on the subsequent reward. Precisely because the auxiliary features of our framework

are excluded from the simplified setting of our theorems, we can conclude that these other

features are not crucial for the applications in Sections 3 and 4.

Our two main theorems, which we prove in Internet Appendix F, are:

Theorem (Model-free learning): Assume that α ∈ (0, 1], β > 0, γ = 0, Rf = 1, and that

there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Assume that Rm,s ≡ R

for all periods s ≥ 1. Further assume that, when an investor allocates money to the stock

market for the first time, the learning rate in the Q-learning algorithm is 1; all the subsequent

learning rates are set to α.
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Given these assumptions, the following result holds:

lim
t→∞

∂E[at]
∂Rm,t−k

=
αβR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

Rβ + 1

)k

. (28)

Theorem (Model-based learning): Assume that α ∈ (0, 1], β > 0, γ = 0, Rf = 1, and

that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Assume that Rm,s ≡ R

for all periods s ≥ 1.

Given these assumptions,

∂E[at]
∂Rm,t−k

=
αβRβ−1

(Rβ + 1)2
(1− α)k (29)

for 0 ≤ k < t− 1. For k = t− 1,

∂E[at]
∂Rm,1

=
βRβ−1

(Rβ + 1)2
(1− α)t−1. (30)

Expressions (28) and (29) confirm that the allocations recommended by each of the model-

free and model-based systems put positive and declining weights on past returns – both

expressions decline monotonically as k increases – and that the decline is more pronounced

for the model-based system: the model-free coefficient in (28) is lower than the model-based

coefficient in (29) for low values of k, but higher than the model-based coefficient for high

values of k.

The following corollaries address two of our applications from Section 4 – the sensitivity

of allocations to beliefs, and the frequency disconnect.

Corollary (Insensitivity): The same assumptions apply as in the above theorems. Under

model-free learning and as t → ∞, the sensitivity of allocations to beliefs is

∂E[at]
∂Ep

t (Rm,t+1)
≡ ∂E[at]/∂Rm,t

∂Ep
t [Rm,t+1]/∂Rm,t

=
βR2β−1

(Rβ + 1)3
. (31)

Under model-based learning, the sensitivity of allocations to beliefs is

∂E[at]
∂Ep

t (Rm,t+1)
≡ ∂E[at]/∂Rm,t

∂Ep
t [Rm,t+1]/∂Rm,t

=
βRβ−1

(Rβ + 1)2
. (32)
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For any R ≥ 0 and β > 0, the model-free sensitivity measure in (31) is strictly smaller than

the model-based sensitivity measure in (32).

Corollary (frequency disconnect): The same assumptions apply as in the above theorems.

Under model-free learning and as t → ∞, there exists a k∗ such that, for 0 ≤ k < k∗,

∂E[at]
∂Rm,t−k

<
∂Ep

t (Rm,t+1)

∂Rm,t−k

,

and for k > k∗,
∂E[at]
∂Rm,t−k

>
∂Ep

t (Rm,t+1)

∂Rm,t−k

.

As such, there is a frequency disconnect: the investor’s beliefs put greater relative weight on

recent past market returns than his allocation does. Under model-based learning,

∂E[at]
∂Rm,t−k

/
∂Ep

t (Rm,t+1)

∂Rm,t−k

=
βRβ−1

(Rβ + 1)2
(33)

is a constant independent of k. There is therefore no frequency disconnect.

5.4 Completeness and restrictiveness

The framework of Section 2 is able to match a number of empirical facts. However, it also has

several parameters. This raises the concern that the framework matches the empirical facts

because it is too flexible.

Recently, Fudenberg et al. (2022) and Fudenberg, Gao, and Liang (2025) propose a way of

evaluating this concern by computing a model’s “completeness” and “restrictiveness.” Com-

pleteness measures how well the model matches the actual data, while restrictiveness measures

how well it matches a typical simulated dataset. A low level of restrictiveness means that the

model matches the typical simulated dataset quite well – a negative quality, as it indicates

that, due to the model’s flexibility, it can “explain anything.” Ideally, then, a framework

should have high levels of both completeness and restrictiveness.

We implement a calculation in the spirit of Fudenberg et al. (2022) and Fudenberg, Gao,

and Liang (2025). We describe it in detail in Internet Appendix G and summarize it here.

Among the 600 parameterizations of our framework described at the start of Section 4, we
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search for the one for which the framework best matches the actual data, as measured by

the sum of squared errors (SSE). Here, the actual data is a 184-element vector of numbers

that summarize the empirical dependence of allocations on past returns, the relationship

between beliefs and past returns, and the sensitivity of allocations to beliefs; we define it

precisely in the Appendix. We record the SSE for this best match and label it the framework’s

completeness. We then simulate 100,000 artificial datasets, where each artificial dataset is a

184-element vector of simulated values for the relationship between allocations, beliefs, and

returns; we detail its construction in the Appendix. For each simulated dataset, we find the

parameterization of our framework that best matches it and record the SSE. After doing this

for all 100,000 simulated datasets, we record the average best-fit SSE across them and label

it the framework’s restrictiveness.

We find that our framework’s best-fit SSE for the actual data is 0.115. Meanwhile, its

average best-fit SSE across the 100,000 simulated datasets is 2.897, a much higher number.

This is an encouraging result. It shows that, while the framework of Section 2 is able to match

the actual data, it is much less able to match simulated data. Put differently, the framework

not only has a high level of completeness; it also has a high level of restrictiveness – despite

having several parameters, it is not so flexible as to be able to “explain anything.”

5.5 Alternative action spaces

In Sections 3 and 4, we focused on one set of possible actions: 11 percentage allocations to

the stock market, {0%, 10%, . . . , 100%}. In Internet Appendix H, we repeat the main analyses

in Sections 3 and 4 for two alternative action spaces to see if, and how, our results change.

In a traditional model-based setting, the choice of action space does not affect the investor’s

behavior; in a setting with model-free learning, it may.

In the first alternative action space, investors choose the number of shares of the stock

market they want to invest in. If, at time t, an investor’s wealth is Wt and the stock market

price is Pt, then the action space at that time ranges from 0 shares to 100⌊Wt/(100Pt)⌋ shares
in increments of 100 shares.

In the second alternative action space, actions are defined relative to the previous period’s

allocation: either “keep the same allocation as before,” “increase the prior allocation by 10%,”

or “decrease the prior allocation by 10%.” To analyze this, we need to introduce a state
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variable st, as in the original formulation in (3), namely the allocation in the prior period.

The reason is that whether an investor wants to increase or lower his allocation is likely to

depend strongly on whether his prior allocation was low or high.

We repeat the main analyses in Sections 3 and 4 for these two alternative action spaces. We

find that, for the first alternative, the results are very similar to those presented in Sections 3

and 4. For the second alternative, the results differ quantitatively from those in Sections 3 and

4, but only to a modest degree; moreover, the qualitative patterns are the same. Overall, we

view the implications and applications of Sections 3 and 4 as robust to using these alternative

action spaces.

5.6 Comparison with models of inattention

One of the properties of model-free learning is that it generates inertia in investor allocations.

It is therefore natural to compare our framework to another framework that is often used to

think about inertia in allocations, namely one based on investor inattention.

We consider three models of inattention. All three take the model-based component of our

framework, discard the model-free component, and instead introduce a form of inattention.

In the first approach, each investor updates his beliefs about stock market returns at each

date as in equations (17)-(18). With probability p, he is attentive, and also makes an active

adjustment to his portfolio allocation: he computes the model-based Q values in (19)-(20) and

then chooses an action probabilistically. However, with probability 1− p, he is not attentive,

and his allocation drifts passively.

In our second approach, the investor again updates his beliefs in each period according to

equations (17)-(18). Moreover, in each period, he updates the model-based Q values of all

allocations, as in (19)-(20). Finally, in each period, he checks whether the expected Q value

of his new allocation, if he did make an active choice, exceeds the Q value of his previously-

chosen allocation by more than some transaction cost c. If this condition is satisfied, the

investor chooses an action probabilistically, according to current Q values. Otherwise, his

allocation drifts passively.

Both of the above inattention models assume that the investor can effortlessly update his

beliefs in each period. In reality, however, the investor may find it just as effortful to update

his beliefs as to change his allocation. We therefore consider a third model, a variant of the

45



first, in which, at each time, the investor is inattentive with probability 1 − p and updates

neither his beliefs nor his allocation; and with probability p, he updates his beliefs and model-

based Q values based on all the returns realized since his last belief update and then chooses

an action probabilistically based on the Q values.

We analyze all three of the above inattention models in detail: we study their predictions

for the dependence of stock market allocations on past stock market returns; experience effects;

the frequency disconnect; the sensitivity of allocations to beliefs; and inertia. We present the

full results in Internet Appendix J and summarize them here.

The first two inattention models lead to similar conclusions. On some dimensions, they

make similar predictions to the framework of Section 2: for high levels of inattention, they

predict that allocations will depend significantly even on distant past returns; and they can

generate a frequency disconnect, insensitivity of allocations to beliefs, and inertia.

Interestingly, though, they make a rather different prediction about experience effects,

namely that, if an investor enters financial markets at time t, his allocation at time T will

typically put more weight on the most recent return he did not experience, Rm,t, than on the

first return he did experience, Rm,t+1. The reason is that, when an investor enters financial

markets, he is paying attention, and so takes account of the return just before he enters, Rm,t.

However, one year later, he may not be paying attention and may therefore not account for

the return at that time, Rm,t+1. By contrast, our Section 2 framework makes the opposite

prediction, one that is more in line with the evidence on experience effects, namely that the

investor will put more weight on Rm,t+1 than on Rm,t.

The third model of inattention in which investors are slow to update both beliefs and

allocations makes similar predictions to the first two inattention models on some dimensions

– it, too, has trouble generating realistic experience effects. However, it differs from our

framework in an additional important way: it is less able to generate insensitivity of allocations

to beliefs; specifically, it predicts a sensitivity more than double that of the first inattention

model.

Overall, our analysis shows that, on some dimensions, our framework makes similar predic-

tions to inattention models. Nonetheless, the two types of frameworks also differ significantly

in some of their implications – most notably, regarding experience effects and the sensitivity

of allocations to beliefs.
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5.7 Other analyses

Parameter estimation. In Section 4, we showed that, for a wide range of parameterizations,

our framework can account for a number of empirical facts about investor behavior. In Internet

Appendix K, we describe a complementary analysis. We estimate the values of four key

parameters – the mean model-based learning rate across investors, ᾱMB; the mean model-

free learning rate ᾱMF ; the exploration parameter β; and the weight w on the model-based

system – by searching for the values that best match three empirical targets: the relationship

between past returns and investor beliefs about future returns, as measured from surveys of

investors; the sensitivity of allocations to beliefs, as computed by Giglio et al. (2021); and

the dependence of allocations on past returns, as reported by Malmendier and Nagel (2011)

in their analysis of experience effects.

Our estimates are ᾱMB = 0.33, ᾱMF = 0.26, β = 20, and w = 0.38, so that investors

put substantial weight on both the model-free and model-based systems. This estimate is

consistent with Figure 5, which shows that a value of w between 0.25 and 0.5 successfully

generates both experience effects and a sensitivity of allocations to beliefs similar to that in

Giglio et al. (2021).

State dependence and system performance. Thus far, our learning algorithms have

not allowed for state dependence: we have worked with action values Q(a) rather than state-

action values Q(s, a) because even this simple case has many applications. In Internet Ap-

pendix L, we show how state dependence can be introduced into our framework. Specifically,

we allow for mean-reversion in returns, so that a state variable based on past returns has

predictive power for future returns. We study the investment performance of the model-free

and model-based systems in this setting, and find that they have similar performance. This

points to one additional reason why some households might use model-free learning: the per-

formance of their model-free system can be at least as good as that of their unsophisticated

model-based system.

Other model-free systems. The two model-free algorithms most commonly used by

psychologists to model human behavior are Q-learning and SARSA. In this paper, we have

used Q-learning as our model-free algorithm. In Internet Appendix M, we show that, if we

repeat our main analyses with SARSA, we obtain similar results. This supports the claim that

our results do not depend on the precise form of model-free learning. Rather, they follow from
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the essential feature of this learning, one that is common to all model-free algorithms, namely

that, at each time, the value of the most-recently action is updated based on the outcome it

led to.

6 Conclusion

When economists try to explain human decision-making in dynamic settings, they typically

assume that people are acting “as if” they have solved a dynamic programming problem. By

contrast, cognitive scientists are increasingly embracing a different approach, one based on

model-free and model-based learning. In this paper, we import this framework into a simple

financial setting, study its implications for investor behavior, and use it to account for a range

of empirical facts about investor allocations and beliefs. Through the model-based system,

our framework preserves a role for beliefs in driving investor behavior. However, through the

model-free system, it also introduces a new way of thinking about this behavior, one based

on reinforcement of past actions.

The vast majority of economic frameworks take a model-based approach. Model-free

reinforcement learning, by contrast, has a much smaller footprint in economics and finance.

The results in this paper argue for a reevaluation of this state of affairs: they suggest that

model-free learning may be more common in economic settings than previously realized.

There are two broad directions for future research. We can apply the framework proposed

here to other economic domains. We can also incorporate richer psychological assumptions –

for example, about time-varying learning rates, time-varying weights on the two systems, or

state dependence. We expect that both of these broad directions will prove fruitful and will

shed new light on people’s choices in economic settings.
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Figure 1. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were
exposed to and plot the coefficients for three cases: a model-free system, a model-
based system, and a hybrid system. The point on the horizontal axis that marks
j years in the past corresponds to the coefficient on Rm,T+1−j. There are 300,000
investors. We set L = T = 30, αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, µ = 0.01,

σ = 0.2, w = 0.5, and b = 0, so that there is no generalization.
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Figure 2. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were
exposed to. The top graph plots the coefficients for the model-based system for four
values of the learning rates αMB

+ and αMB
− , namely 0.05, 0.1, 0.2, and 0.5. The point

on the horizontal axis that marks j years in the past corresponds to the coefficient
on Rm,T+1−j. The bottom graph plots the coefficients for the model-free system for
four values of the learning rates αMF

+ and αMF
− , namely 0.05, 0.1, 0.2, and 0.5. There

are 300,000 investors. We set L = T = 30, β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and
b = 0, so that there is no generalization.
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Figure 3. For different sets of parameter values, we run a regression of investors’
allocations to the stock market aT at time T under the model-free system on the
past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were exposed to and
plot the coefficients. The lines in the top-left, top-right, bottom-left, and bottom-
right graphs correspond, respectively, to four values of the generalization parameter
b, namely 0, 0.0577, 0.115, and 0.23; to three values of the exploration parameter β,
namely 10, 50, and ∞, which corresponds to no exploration; to three values of the
discount factor γ, namely 0.3, 0.9, and 0.99; and to different numbers of allocation
choices, namely 3, 6, 11, and 21. There are 300,000 investors. The benchmark
parameter values are L = T = 30, αMF

± = 0.5, β = 30, γ = 0.97, µ = 0.01, σ = 0.2,
and b = 0, so that there is no generalization.
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Figure 4. The solid line plots the coefficients in a regression of the stock market
allocation aT at date T chosen by investors who use a hybrid system to make de-
cisions on the past 30 years of stock market returns the investors were exposed to.
The dashed line plots the coefficients in a regression of investors’ expectations at
time T about the future one-year stock market return on the past 30 years of stock
market returns. There are 300,000 investors: six cohorts of 50,000 investors each
who enter financial markets at different times. For each investor, each of αMF

+ , αMF
− ,

αMB
+ , and αMB

− is drawn independently from a uniform distribution with mean ᾱ
and width ∆. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5, µ = 0.01,
σ = 0.2, b = 0.0577, and w = 0.5.
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Figure 5. For each of a large number of parameterizations of our framework,
we check whether the framework generates: a frequency disconnect; insensitivity
of allocations to beliefs; an experience effect; inertia in allocations; dispersion in
allocations; and predictability of allocations by the experience variables a

(1),∗
30 and

a
(2),∗
30 . For each of these six phenomena, the six graphs record, for each of the five

values of w, namely 0, 0.25, 0.5, 0.75, and 1, where w is the weight on the model-
based system, the fraction of parameterizations with that value of w for which the
phenomenon is observed.
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Figure 6. The six graphs correspond to six cohorts of investors. In each graph, the
solid line plots the coefficients, normalized to sum to one, in a regression of the time-
T stock market allocations aT of the investors in that cohort on the past 30 years of
stock market returns they were exposed to. The six cohorts have different numbers
of years of experience, namely n = 30, 25, 20, 15, 10, and 5; the vertical dotted
line in each graph marks the time at which the cohort enters financial markets.
There are 300,000 investors, with 50,000 in each cohort. For each investor, each of
αMF
+ , αMF

− , αMB
+ , and αMB

− is drawn independently from a uniform distribution with
mean ᾱ and width ∆. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5,
µ = 0.01, σ = 0.2, b = 0.0577, and w = 0.5. In each graph, the dashed line plots a
functional form for experience effects calibrated to data by Malmendier and Nagel
(2011), namely (n+ 1− j)λ/A, where j is the number of years in the past, λ = 1.3,
and A is a normalizing constant.
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INTERNET APPENDIX

A. Experimental Evidence of Model-free Decision-making

A number of experimental paradigms allow researchers to isolate the influence of model-
free learning from model-based learning. Among the best known is the “two-step task”
introduced by Daw et al. (2011). In this section, we summarize this task and some key
findings about behavior in the task.

In the first stage of the experiment – see Figure A1 – a participant is given a choice
between two options, A and B. If he chooses A, then, with probability 0.7, he is given a
choice between options C and D, and with probability 0.3, a choice between options E and
F. Conversely, if he chooses B in the first stage, then, with probability 0.7, he is given a
choice between E and F, and with probability 0.3, a choice between C and D. After choosing
between C and D or between E and F, the participant receives the reward associated with the
chosen second-stage option. He repeats this task multiple times with the goal of maximizing
the sum of his rewards.1

A B

C D E F

0.7 0.70.3 0.3

Figure A1. The diagram shows the structure of an experiment in Daw et al. (2011).
In the first stage, the participant has a choice between two options, A and B; in
the second stage, he chooses either between options C and D or between options E
and F. The arrows indicate the transition probabilities from the first to the second
stage. After making a choice at the second stage, the participant receives the reward
associated with the chosen option.

The model-free and model-based systems make different predictions about behavior in
this setting. Suppose that the individual chooses A in the first stage and is then offered
a choice between E and F; suppose that he chooses E and then receives a reward. Under
the model-free system, he will be inclined to choose A again in the next trial because this
choice was ultimately rewarded. Under the model-based system, however, he will be inclined
to choose B in the next trial: the model-based system makes use of information about the

1In the standard version of this experiment, participants are informed that each of the first-stage options
is primarily associated with one of the C-D and E-F pairs but are not told which one, nor are they told the
precise transition probabilities.
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structure of the task; since B offers a greater likelihood of ending up with the rewarded
option E, he prefers B.

To evaluate the relative influence of model-free and model-based thinking on people’s
choices, Daw et al. (2011) run a regression of whether a participant repeats his previous
first-stage choice on two variables: an indicator variable that equals one if this previous
choice resulted in a reward; and this indicator interacted with another indicator variable
that equals one if the individual saw the common rather than the rare second-stage options.
For example, following an initial choice of A, the common second-stage options are C and
D while the rare ones are E and F. If behavior is driven purely by the model-free system,
only the coefficient on the first regressor will be significant. If behavior is driven purely
by the model-based system, only the coefficient on the second regressor will be significant.
The authors find that both coefficients are significant, which means that both systems are
playing a role; an estimation exercise indicates that participants are putting approximately
60% weight on the model-free system and 40% weight on the model-based system.2

The above experiment illustrates a tension between model-free and model-based learning.
If an individual chooses A and then E and is rewarded, the model-free system wants to repeat
action A in the next round, while the model-based system, recognizing that B is more likely to
lead to E, wants to choose B. A similar tension is present in the financial market setting we lay
out in Section 2.2 of the paper. If the investor starts with a low allocation to the stock market
and the market then posts a high return, the model-free system wants to stick with a low
allocation because this action was reinforced: it was followed by a positive reward prediction
error. By contrast, the model-based system wants to increase the investor’s allocation to the
stock market: it now perceives a more attractive distribution of market returns and wants
more exposure to it.

The presence of both model-free and model-based influences on behavior is also supported
by neural data. We discuss some of this evidence in Section 2.1 of the main text.

B. Analysis of Alternative Decision Problem Formulations

Consider a setting with two risky assets – risky asset A and risky asset B – and define
the “market” asset, denoted as asset M, as the sum of one share of asset A and one share of
asset B. In this section, we examine whether the behavior of an investor who uses model-free
learning depends on whether his control variables are his allocations to assets A and B; his
allocations to assets A and M ; or his allocations to assets B and M.

We assume that assets A and B have lognormal returns:

logRA,t = µA + σA · εA,t,

logRB,t = µB + σB · εB,t, (1)

where, for simplicity, we take εA,t and εB,t to be two mutually independent standard Normal

2Feher da Silva et al. (2023) suggest that behavior in the two-step task may be driven by switching
between different model-based systems, rather than by a combination of model-free and model-based learning.
However, they do not offer a concrete alternative to the model-free and model-based learning approach, and
the latter continues to be the dominant framework for thinking about a large body of both behavioral and
neural data.
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random variables. At each point in time, asset M consists of a 50% allocation to asset A and
a 50% allocation to asset B – at the end of each period, there is rebalancing between asset
A and asset B so that, moving forward, asset M continues to consist of a 50% allocation to
asset A and a 50% allocation to asset B. Formally, for any t, the return on asset M is given
by

RM,t+1 = 0.5RA,t+1 + 0.5RB,t+1. (2)

For each investor, at each point in time, his action space consists of a pair of portfolio
weights. In the case where the investor is choosing allocations to assets A and B, these are
given by

at = (aA,t, aB,t), (3)

where aA,t and aB,t are each chosen from the 11 possible allocations {0%, 10%, . . . , 100%}.
We require that aA,t + aB,t ≤ 1; that is, the investor is not allowed to borrow. So, for each
value of aA,t, the feasible range of aB,t goes from 0% to 1− aA,t.

We choose the asset parameters (µA, σA, µB, σB) so that the optimal allocations a∗A and
a∗B satisfy 0 ≤ a∗A, a

∗
B ≤ 1 and 0 ≤ a∗A + a∗B ≤ 1. Here, we set µA = 0%, σA = 20%,

µB = −1%, and σB = 20%. We also set Rf to 1. The optimal allocations are then given by

(a∗A, a
∗
B) = arg max

aA,aB
E [log ((1− aA − aB)Rf + aARA,t+1 + aBRB,t+1)] . (4)

The numerical solutions are a∗A = 50% and a∗B = 20%; the remaining 30% of the investor’s
wealth is allocated to the risk-free asset. The level of expected utility is 0.0062.

Below, we consider three different scenarios. The first scenario allows the investor to trade
assets A and B; the remaining wealth is allocated to the risk-free asset. The second scenario
allows the investor to trade assets A and M , and the third scenario allows him to trade
assets B and M . In a rational model-based environment, where the investor understands
that asset M is always an equal mix of assets A and B, he can achieve his optimal portfolio
in any of three ways: investing 50% of his wealth in asset A and 20% in asset B; investing
30% of his wealth in asset A and 40% in asset M ; or investing −30% of his wealth in asset
B and 100% in asset M . The question is: What does a model-free investor do, in each of
these three scenarios?

Scenario 1. We consider the most basic model-free learning algorithm, one with constant
learning rates and without generalization. In Scenario 1, the investor trades asset A and
asset B. Note that here, the Q values are two dimensional functions, as suggested by (3).
Other than the four asset parameters (µA = 0%, σA = 20%, µB = −1%, and σB = 20%),
the remaining parameters take the values listed in the caption to Figure 1 in the main text.
As before, the fraction of wealth allocated to each asset is one of 11 possible percentage
allocations. The sum of the two fractions must be less than or equal to 100%; in other
words, the investor cannot borrow.

Using equation (1), we simulate 30 years of returns for assets A and B. For this sequence of
returns, we compute the investor’s allocations to assets A and B at each date t = 0, 1, . . . , 30.
The left panel in Figure A2 plots these allocations. Below, we will compare these allocations
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to those chosen under the two alternative scenarios.
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Figure A2. An investor uses model-free learning to allocate his portfolio in an
economy with two risky assets, A and B, and a market asset that is a 50:50 com-
bination of A and B. The left, middle, and right graphs plot the investor’s effective
allocations to assets A and B when his control variables are the allocations to assets
A and B, the allocations to assets A and M, and the allocations to assets B and M,
respectively.

Scenario 2. In this scenario, the investor trades asset A and asset M . Here, the
investor’s action space consists of a pair of portfolio weights:

at = (aA,t, aM,t). (5)

We assume that aM,t is chosen from the 11 possible allocations {0%, 20%, 40%, . . . , 200%}.
For a given level of aM,t, the allocation aA,t ranges from −1

2
aM,t to 1−aM,t, in 10% increments.

This construction of the action space effectively allows the investor to choose the same set of
allocations to asset A and asset B as in Scenario 1, through holding a combination of asset
A and asset M .

We now take the same simulated returns for assets A and B that we used in Scenario 1
and, for these returns, compute the investor’s allocations to assets A and M at each date
t = 0, 1, . . . , 30. In this exercise, in order to focus purely on the impact of the action space, we
keep the randomness associated with the stochastic choice the same as in Scenario 1. Once
we have computed the allocations to assets A and M, we calculate the effective allocations to
assets A and B and plot these in the center panel of Figure A2. We note that, even though
the control variables are different across Scenarios 1 and 2, the effective allocations to assets
A and B turn out to be exactly identical.

Scenario 3. In this scenario, investors trade asset B and asset M . The investor’s action
space consists of a pair of portfolio weights:

at = (aB,t, aM,t). (6)

We assume that aM,t is chosen from the 11 possible allocations {0%, 20%, 40%, . . . , 200%}.
For a given level of aM,t, the allocation aB,t ranges from −1

2
aM,t to 1−aM,t, in 10% increments.

This construction of the action space effectively allows the investor to choose the same set of
allocations to asset A and asset B as in Scenario 1, through holding a combination of asset
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B and asset M .
We now take the same simulated returns for assets A and B that we used in Scenarios 1

and 2 and, for these returns, compute the investor’s allocations to assets B and M at each
time t = 0, 1, . . . , 30. As before, to focus purely on the impact of the action space, we keep
the randomness associated with the stochastic choice the same as in Scenarios 1 and 2. Once
we have computed the allocations to assets B and M, we calculate the effective allocations
to assets A and B and plot these in the right panel of Figure A2. We note that, even though
the control variables in Scenario 3 are different from those in Scenarios 1 and 2, the effective
allocations to assets A and B are exactly the same across all three scenarios. As such, the
choice of action space has no impact on behavior.

To check that the result in Figure A2 is not a fluke, we repeat the exercise 1,000 times.
In other words, we simulate 1,000 different 30-year sequences of returns on assets A and B,
and for each one, compute the investor’s effective allocations to assets A and B under each
of the three scenarios. We find that, for each of the 1,000 iterations, the effective allocations
to A and B are identical at each moment of time across all three scenarios.

The main takeaway of the analysis in this section is that, under model-free learning, the
three scenarios examined above all lead to the same portfolio allocations: in Scenarios 2
and 3, converting the holding of asset M to holdings of assets A and B leads to identical
holdings to those in Scenario 1. This finding makes sense: model-free investors are not
concerned about holding specific assets per se; instead, they focus on learning how their
actions yield rewards – namely, the log portfolio returns resulting from holding assets A and
B, assets A and M , or assets B and M .

C. The Mechanics of the Model-free and Model-based Systems: An Example

In this section, we illustrate the mechanics of the model-free and model-based systems
by way of an example. We consider an investor who is exposed to a sequence of stock
market returns from t = −L to t = T , where L = T = 30. The returns are simulated from
the distribution in (6) with µ = 0.01 and σ = 0.2. We set the investor’s learning rates to
αMF
± = αMB

± = 0.5, the exploration parameter β to 30, the discount factor γ to 0.97, and the
degree of generalization b to 0.0577. At each date, we allow the investor to choose his stock
market allocation at from one of the 11 possible allocations {0%, 10%, . . . , 90%, 100%}.

In the framework of Section 2, decisions are based on hybrid Q values that combine the
influences of the model-free and model-based systems. To clearly illustrate the mechanics
of each system, we consider two simpler cases in this section: one where the investor uses
only the model-free system to make decisions, and one where he uses only the model-based
system.

Table A1 shows the model-free Q values, QMF , based on equations (11), (13), and (14)
in the main text (upper panel) and the model-based Q values, QMB, based on equations
(19) and (20) in the main text (lower panel) that the investor assigns to the 11 possible
allocations on his first six dates of participation in financial markets, namely t = 0, 1, 2, 3,
4, and 5. The rows labeled “net market return” show the net return of the stock market at
each date. In each column, the number in bold corresponds to the action that was taken in
the previous period; for example, the number −0.065 in bold at date 1 in the upper panel
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indicates that the investor chose a 70% allocation at date 0.3

Consider the upper panel of Table A1. The model-free system begins operating at time 0.
At that time, then, it assigns a Q value of zero to all the allocations. It then randomly selects
the allocation 70%. The net stock market return at time 1 is negative, which means that
the investor’s net portfolio return and reward prediction error are also negative. The time-1
Q value for the 70% allocation therefore falls below zero. As per equations (13) and (14) in
the main text, the algorithm also engages in some generalization: since a 60% allocation and
an 80% allocation are similar to a 70% allocation, their Q values also fall, albeit to a lesser
extent. The Q values of more distant allocations are unaffected, at least to three decimal
places.

At time 1, the investor chooses the allocation 30%. The time-2 market return is positive;
the investor therefore earns a positive net portfolio return and the time-2 Q value of the 30%
allocation goes up, as do, to a lesser extent, the Q values of the similar allocations 20% and
40%. At time 2, the investor chooses the allocation 100%. While the market falls slightly at
time 3, the time-3 Q value of the 100% allocation goes up by a small amount because the
reward prediction error is slightly positive. At dates 3 and 4, the investor chooses allocations
of 30% and 40%, respectively, and updates the values of these allocations and their close
neighbors based on the prediction errors they lead to at dates 4 and 5.

The lower panel shows that the Q values generated by the model-based system are quite
different. By time 0, the model-based system has already been operating for 30 periods
and so already has well-developed Q values for each of the 11 allocations. In the periods
immediately preceding time 0, the simulated stock market returns are somewhat positive;
higher allocations to the stock market therefore have higher Q values at time 0. At time 1,
the stock market return is poor, so all Q values fall, but those of riskier allocations do so
more: the negative stock market return at time 1 makes the investor’s perceived distribution
of stock market returns less appealing; this has a larger impact on strategies that allocate
more to the stock market. At time 2, the stock market return is positive, so all Q values go
up, but those of the riskier allocations do so more.

Table A1 makes clear a key difference between the model-free and model-based systems:
while, at each time, the model-based system updates the Q values of all the allocations, the
model-free system primarily updates only the Q values of the most recently-chosen allocation
and those of its nearest neighbors. The reason is that it is model-free: it knows nothing about
the structure of the problem and therefore cannot make a strong inference, after seeing the
outcome of a 70% allocation, about the value of a 20% allocation.

3In the case where decisions are determined by the model-based system alone, we assume that the investor
still chooses actions probabilistically, in a manner analogous to that in expression (11) in the main text. In
our setting, for the model-based system, this probabilistic choice does not offer the usual exploration benefits:
in each period, the investor learns the same thing about the distribution of stock market returns regardless
of which allocation he chooses. We keep the probabilistic choice to allow for a more direct comparison with
the model-free system.
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Table A1. Model-free and model-based Q values. The upper panel reports model-
free Q values for 11 stock market allocations from t = 0 to t = 5. The lower panel reports
model-based Q values for the 11 allocations for the same six dates. The rows labeled “net
market return” report the net stock market return at each date. Boldface type indicates the
allocation that was taken in the previous period. We set L = 30, αMF

± = αMB
± = 0.5, β = 30,

γ = 0.97, µ = 0.01, σ = 0.2, and b = 0.0577.

MODEL-FREE
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0 0 0 0 0 0
10% 0 0 0 0 0 0
20% 0 0 0.006 0.006 0.01 0.01
30% 0 0 0.027 0.027 0.045 0.041
40% 0 0 0.006 0.006 0.01 -0.007
50% 0 0 0 0 0 -0.004
60% 0 -0.015 -0.015 -0.015 -0.015 -0.015
70% 0 -0.065 -0.065 -0.065 -0.065 -0.065
80% 0 -0.015 -0.015 -0.014 -0.014 -0.014
90% 0 0 0 0.001 0.001 0.001
100% 0 0 0 0.006 0.006 0.006

MODEL-BASED
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0.72 0 1.352 0.464 2.179 0
10% 0.723 -0.007 1.357 0.466 2.187 -0.005
20% 0.726 -0.015 1.362 0.468 2.194 -0.01
30% 0.729 -0.022 1.367 0.47 2.201 -0.015
40% 0.731 -0.03 1.372 0.472 2.208 -0.02
50% 0.733 -0.039 1.376 0.473 2.215 -0.026
60% 0.736 -0.047 1.38 0.475 2.222 -0.031
70% 0.737 -0.056 1.384 0.476 2.228 -0.037
80% 0.739 -0.065 1.387 0.477 2.234 -0.044
90% 0.741 -0.075 1.39 0.478 2.241 -0.05
100% 0.742 -0.085 1.393 0.479 2.247 -0.057

The upper panel of Table A1 raises the concern that the model-free system generates too
much “bouncing around” in allocations. In fact, in general, the model-free system does not
generate a lot of bouncing around of allocations. As shown in Section 4.4 of the paper, the
model-free system generates strong inertia in allocations, both in absolute terms and relative
to the model-based system. The reason why, in the upper panel, the chosen allocation varies
a lot, is that we went out of our way to select, from various simulated examples, one that
featured a lot of variation in allocations, as this makes it easier to explain the mechanics of
the model-free system.
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By contrast, as can be seen in the lower panel of Table A1, the model-based system
really does generate a lot of variation in allocations. This sets up the puzzle that needs
to be explained. In survey data, household beliefs about future stock market returns are
extrapolative: they depend positively on the past year or two of stock market returns. But
as soon as we embed such beliefs in a portfolio choice framework, they predict large swings
in portfolio allocations, contrary to the infrequent moves we observe in practice. The model-
based system captures this puzzle: the model-based learners’ process for constructing a
distribution of stock market returns leads these investors to weight recent returns heavily in
their beliefs; when coupled with their utility function, this leads to big swings in allocations,
as seen in the lower panel of Table A1.

Again, these big swings set up the puzzle: If households have extrapolative beliefs, how
can this nonetheless lead to inertia in allocations? Traditional finance offers one explanation,
namely transaction costs or attention costs. Our paper offers a new possibility, namely
model-free learning.

D. The Relationship between Model-free Allocations and Past Returns: Com-
parative Statics

The graphs in Figure 3 of the main text show how the relationship between investors’
time T model-free allocations and past stock market returns changes as we vary one of the
parameters while keeping the others at their benchmark levels. Across the four graphs, we
vary the degree of generalization, the degree of exploration, the discount factor, and the
number of allocation choices. Changing these parameters would have little effect on model-
based allocations. However, Figure 3 shows that it has significant impact on model-free
allocations. In this section, we explain the intuition for these patterns.

Generalization. The top-left graph in Figure 3 plots the coefficients in a regression
of the time-T model-free allocation on past stock market returns for four values of the
generalization parameter b: 0, 0.0577, 0.115, and 0.23. The first of these values corresponds
to no generalization; the other three values give the Gaussian function in equation (14) of
the main text, normalized as a probability distribution, a standard deviation equal to that
of a uniform distribution whose support has a width of 0.2, 0.4, and 0.8, respectively.

The graph shows that, as we raise the degree of generalization, the model-free allocation
starts to put more relative weight on distant past returns. To see the intuition, suppose that,
when he first enters financial markets, an investor chooses an allocation of 80% and that the
stock market then performs well. For a high degree of generalization, as with b = 0.23, this
immediately creates a cluster of allocations ranging from, say, 60% to 100%, with high Q
values. This makes it likely that the investor will keep choosing an allocation in this range
for a long time to come, thereby giving the early returns he encountered an outsized influence
on his later allocations.

Exploration. The top-right graph in Figure 3 plots the relationship between the model-
free allocation and past market returns for three different values of β, which controls the
degree of exploration, namely 10, 50, and ∞. As β rises, the investor explores less: he is
more likely to choose the allocation with the highest estimated Q value; when β = ∞, he
always chooses this allocation. We find that, for a wide range of values of β – any β below
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80 – the model-free allocation puts positive weights on past returns that decline over most
of the time range, as they do for our benchmark case of β = 30. However, when β is higher
than 80, the weights on past returns increase for more than half of the time range. To see
why, suppose that, soon after the investor enters financial markets, the stock market posts
a high return, raising the Q value of his most recent allocation. If the value of β is high, the
investor is likely to stick with this allocation for a substantial period of time. As such, the
early returns he experiences have a large effect on his subsequent allocations.

Discount factor. The bottom-left graph plots the relationship between the model-free
allocation and past market returns for three different values of the discount factor γ, namely
0.3, 0.9, and 0.99. As we lower γ, the allocation puts much greater weight on recent past
returns. This is striking in that it links an investor’s expected future investment horizon to
the relative weight he puts on recent as opposed to distant past returns when choosing an
allocation. For the model-based system, by contrast, the discount factor does not affect the
dependence of allocations on past returns.

Number of allocations. In the main text, we allowed investors to select from one of
11 possible allocations. The bottom-right graph in Figure 3 shows how the time-T model-
free allocation depends on past market returns as we vary the number of allocation options,
ranging from three, namely {0%, 50%, 100%}, up to 21, namely {0%, 5%, ... , 95%, 100%}.
The graph shows that, as we lower the number of possible allocations, the relationship
between the time-T allocation and past returns, while initially downward-sloping, becomes
much flatter, thereby giving distant past returns a larger role. This property of the model-free
system again distinguishes it from the model-based system, where the number of possible
allocations has little impact on the relationship between the time-T allocation and past
returns.

One way of understanding the bottom-right graph is to note that reducing the number
of allocation options is akin to increasing the degree of generalization: since generalization
leads the investor to treat nearby allocations in a similar way, a large number of allocations
coupled with generalization is like a small number of allocations without generalization. Just
as in the top-left graph we see a flat or increasing relationship between the time-T allocation
and returns for higher levels of generalization, so in the lower-right graph we see a flat and,
in places, increasing relationship for a lower number of allocation choices.

In summary, the model-free system has rich implications for the relationship between
allocations and past market returns. While this relationship is typically downward-sloping,
it can sometimes be upward-sloping. Moreover, there is structure to this relationship: we
know the conditions under which it is more likely to be downward- rather than upward-
sloping. Finally, the relationship between model-free allocations and past market returns is
affected by factors that play little to no role for the model-based system.

E. Analysis of Rational Benchmarks: Results

Our implementation of model-free and model-based learning in Sections 3 and 4 assumes
that each investor uses learning rates that are constant over time. This implies that neither
system is fully rational: for the model-free Q values to converge to the correct Q∗ in equation
(12) in the main text, a declining model-free learning rate is needed, as in (24) in the main

67



text; similarly, for the model-based Q values to converge to the correct Q∗, the declining
model-based learning rate in (23) in the main text is needed. We use constant learning rates
for the sake of psychological realism: most of the psychology research that we draw on uses
constant learning rates.

In this section, we examine what happens when we use more rational versions of model-
free and model-based learning that feature declining learning rates. We find that, for the
applications in Section 4, it is important that the model-based system use a constant learning
rate; without it, we cannot match some key facts about investor behavior. By contrast, the
constant learning rate is not needed for the model-free system: even with a declining model-
free learning rate, we continue to match the facts about investor behavior discussed in Section
4, although the quantitative fit is not quite as good. This is an example of the robustness
of our results to the specific implementation of model-free learning: the results do not hinge
on a constant model-free learning rate.

For the rational model-based system, we adopt the declining learning rate in equation
(23) in the main text. Each investor then proceeds as before: he constructs his perceived
return distribution as in (17)-(18) in the main text and his model-based Q values as in (19).
Consistent with the assumption that returns are i.i.d., the declining learning rate leads the
investor to put equal weight on all past stock market returns when forming beliefs.

For the rational model-free system, we take inspiration from research on multi-armed
bandit problems where, similar to our setting, an individual selects among different options
by trying them and observing the outcome. Specifically, we use:

QMF
t (a) = QMF

t,1 (a) +
γ

1− γ
max
a′

QMF
t,1 (a′) (7)

and

QMF
t,1 (a) =

∑t−1
k=0 1ak=a logRp,k+1(ak)∑t−1

k=0 1ak=a

(8)

if the allocation a has been tried at least once before time t, and QMF
t,1 = 0 otherwise.

Equation (7) has the same form as equation (12) in the main text; QMF
t,1 (a) is an estimate of

E(log((1− a)Rf + aRm,t+1)), where the estimate is constructed as the average log portfolio
return in the periods after taking allocation a. This approach effectively uses a declining
learning rate – an action-specific learning rate that declines over time based on how often
an action has been tried.

At each time, and for each action, the investor then computes a hybrid Q value as in
equation (21) in the main text. In one last modification, we assume that the investor chooses
an action at each time not using the softmax approach in equation (22) in the main text,
but rather using another device that is common in research on multi-armed bandits, namely
an “epsilon-greedy” algorithm where, at time t, the investor takes the allocation with the
highest estimated QHY B value with probability 1 − ε, and with probability ε chooses one
of the other actions at random. This ensures that, in the limit as t → ∞, the investor will
try all actions infinitely often, which in turn means that each of QMF , QMB, and QHY B will
converge to the correct Q∗.4

4We use the epsilon-greedy algorithm for this exercise because convergence to Q∗ is assured without
further assumptions. In the case of softmax, convergence to Q∗ is assured with the additional assumption
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We now repeat the main analyses in Sections 3 and 4 for two cases: first, the case where
investors use the rational versions of both model-based and model-free learning; and second,
the case where they use the rational version of model-free learning and the benchmark version
of model-based learning from Sections 3 and 4 that features a constant learning rate. (The
results in the case where investors use the rational version of model-based learning and the
benchmark version of model-free learning are very similar to the results in the case where
they use rational versions of both algorithms.)

Rational model-based and rational model-free systems. Figure A3 is the analog
of Figure 1: it shows how the allocations recommended by each of the model-free, model-
based, and hybrid systems at time 30 depend on the past 30 years of stock market returns.
To construct this graph, we take a single cohort of 300,000 investors, each of whom observes
a different sequence of past stock market returns. We set L = T = 30, ε = 0.5, γ = 0.97,
µ = 0.01, and σ = 0.2. In the case of the hybrid system, w = 0.5.
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Figure A3. Analogous to Figure 1 in the main text, the graph shows how the allo-
cations recommended by the model-free, model-based, and hybrid systems depend
on past stock market returns. In contrast to Figure 1, investors use rational versions
of the model-free and model-based systems. There are 300,000 investors. We set
L = T = 30, ε = 0.5, γ = 0.97, µ = 0.01, and σ = 0.2. In the case of the hybrid
system, w = 0.5.

The main difference between Figure A3 and Figure 1 is for the model-based system. In
Figure 1, the line for this system declines sharply; in Figure A3, it is flat: since, under
the rational model-based system, investor beliefs put equal weight on all past returns, the
model-based allocation does too. By contrast, the model-free lines in Figure A3 and Figure

that all actions are tried infinitely often. In practice, the results we report in this section are similar, whether
we use epsilon-greedy or softmax.
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1 are similar – an early indication that our results are robust to using rational model-free
learning.

Figure A4, the analog of Figure 4, presents the results for the frequency disconnect, while
Figure A5, the analog of Figure 6, presents the results for experience effects. To construct
these figures, we take 300,000 investors in six cohorts and set L = T = 30, ε = 0.5, γ = 0.97,
µ = 0.01, σ = 0.2, and w = 0.5. We also compute the sensitivity of allocations to beliefs;
the measure of inertia from Section 4.4; and the measure of dispersion from Section 4.5. We
find these to be, respectively, 2.52, 28.57%, and 31.27%.
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Figure A4. Analogous to Figure 4 in the main text, the graph shows how investors’
allocations and beliefs at time 30 depend on the past 30 years of stock market returns.
In contrast to Figure 4, investors use rational versions of the model-free and model-
based systems. There are 300,000 investors in six cohorts. We set L = T = 30,
ε = 0.5, γ = 0.97, µ = 0.01, σ = 0.2, and w = 0.5.

These results show that a framework that combines rational model-based learning with
rational model-free learning does a poor job capturing the empirical facts. Most important,
in this framework, investor beliefs put equal weight on past stock market returns, in sharp
contrast to survey data where household beliefs depend heavily on recent returns. This,
in turn, means that the framework cannot capture the frequency disconnect and that it
does a poor job matching experience effects: Figure A5 shows that, within the set of re-
turns an investor has experienced, he does not put more weight on recent returns, which is
counterfactual.

Rational model-free and benchmark model-based systems. We now consider the
case where investors use the benchmark model-based system from Sections 3 and 4, one with
a constant learning rate, together with the rational model-free system in equations (7)-(8).

Figure A6 is the analog of Figure 1 in the main text: it shows how the allocations
recommended by the model-based, model-free, and hybrid systems at time 30 depend on the

70



0 10 20 30

0

0.02

0.04

0.06

0 10 20 30

0

0.02

0.04

0.06

0.08

0 10 20 30

0

0.05

0.1

0 10 20 30

0

0.05

0.1

0 10 20 30

0

0.05

0.1

0.15

0.2

0 10 20 30

0

0.1

0.2

0.3

Figure A5. Analogous to Figure 6 in the main text, the graph shows how the
allocations of each of the six cohorts depend on past stock market returns. In
contrast to Figure 6, investors use rational versions of the model-free and model-
based systems. There are 300,000 investors in six cohorts. We set L = T = 30,
ε = 0.5, γ = 0.97, µ = 0.01, σ = 0.2, and w = 0.5.

past 30 years of stock market returns. To construct this graph, we take a single cohort of
300,000 investors, each of whom observes a different sequence of past stock market returns.
We set L = T = 30, αMB

± = 0.5, ε = 0.5, γ = 0.97, µ = 0.01, and σ = 0.2. In the case of the
hybrid system, we set w = 0.5. We see that the graph is similar to Figure 1: replacing the
baseline model-free system with a rational one leads to similar results.

Figure A7, the analog of Figure 4, presents results for the frequency disconnect, while
Figure A8, the analog of Figure 6, presents results for experience effects. To construct these
figures, we take 300,000 investors in six cohorts and set L = T = 30, ε = 0.5, αMB

± = 0.5,
∆ = 0.5, γ = 0.97, µ = 0.01, σ = 0.2, and w = 0.5. The sensitivity of allocations to beliefs
is 0.9572; the measure of inertia is 24.03%; and the measure of dispersion is 34.44%.

These results convey an important finding, namely that our results in Sections 3 and
4, obtained with a model-free system with a constant learning rate, are robust to using a
more rational model-free system with a declining learning rate: a framework with a rational
model-free system can capture experience effects, a frequency disconnect, insensitivity of
allocations to beliefs, inertia, and dispersion in allocations. Nonetheless, we use a constant
learning rate in Sections 3 and 4 in order to be psychologically realistic: psychology research
overwhelmingly uses a constant learning rate. And while a rational model-free system can
qualitatively capture the applications we consider, the quantitative fit is not quite as good,
particularly in the case of experience effects and the frequency disconnect.

F. Analytical Results
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Figure A6. Analogous to Figure 1 in the main text, the graph shows how the
allocations recommended by the model-free, model-based, and hybrid systems de-
pend on past stock market returns. In contrast to Figure 1, investors use a rational
version of the model-free system. There are 300,000 investors. We set L = T = 30,
αMB
± = 0.5, ε = 0.5, γ = 0.97, µ = 0.01, and σ = 0.2. In the case of the hybrid

system, w = 0.5.

In this Appendix, we prove the theorems stated in Section 5.3, which are labeled as
Theorem 3 and Theorem 4 below, and also the two corollaries from that section, which
speak directly to two of our key applications: the frequency disconnect and the sensitivity of
allocations to beliefs. To build intuition for the proofs, we start with two simpler theorems,
Theorem 1 and Theorem 2, which assume a learning rate of α = 1 for both the model-free
and model-based systems.

Theorem 1 (Model-free learning): Assume that α = 1, β > 0, γ = 0, Rf = 1, and
that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Further assume that
Rm,t ≡ R for all periods t ≥ 1.

Given these assumptions, the following result holds:

lim
t→∞

∂E[at]
∂Rm,t−k

=
βR2β−1

(Rβ + 1)k+3
(9)

for k ≥ 0.

Proof: At any time t > 0,

Qt(0) = log(Rf ) = 1,

Qt(1) = log(Rm,t′), (10)
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Figure A7. Analogous to Figure 4 in the main text, the graph shows how investors’
allocations and beliefs at time 30 depend on the past 30 years of stock market returns.
In contrast to Figure 4, investors use a rational version of the model-free system.
There are 300,000 investors in six cohorts. We set L = T = 30, αMB

± = 0.5, ε = 0.5,
γ = 0.97, ∆ = 0.5, µ = 0.01, σ = 0.2, and w = 0.5.

where t′ is the most recent time such that at′−1 = 1 and Rm,t′ is the market return from time
t′ − 1 to time t′.

Equation (10) allows us to express the expected allocation E[at] as

E[at] = P(at = 1)

=
t−1∑
i=0

P(at = 1|i is the largest index s.t. ai = 1)× P(ai = 1)

+P(at = 1|a0 = . . . = at−1 = 0)× P(a0 = . . . = at−1 = 0)

=

 t−1∑
i=0

Rβ
m,i+1

Rβ
m,i+1 + 1

(
1

Rβ
m,i+1 + 1

)t−i−1

× P(ai = 1)

+
1

2t+1
. (11)

Given the assumption that Rm,t ≡ R for all periods t ≥ 1, we conjecture and then verify
the following result:

P(at = 1) =
(2t+1 − 1)Rβ + 1

2t+1(Rβ + 1)
, ∀t ≥ 0. (12)

The verification of (12) is as follows. When t = 0, equation (12) implies that P(a0 =
1) = 1

2
, which is clearly true. For t = j ≥ 1, suppose (12) is true for 0 ≤ i ≤ j − 1. Then,
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Figure A8. Analogous to Figure 6 in the main text, the graph shows how the
allocations of each of the six cohorts depend on past stock market returns. In
contrast to Figure 6, investors use a rational version of the model-free system. There
are 300,000 investors in six cohorts. We set L = T = 30, αMB

± = 0.5, ε = 0.5,
γ = 0.97, ∆ = 0.5, µ = 0.01, σ = 0.2, and w = 0.5.

from equation (11), we have

P(aj = 1) =

(
j−1∑
i=0

Rβ

(Rβ + 1)j−i
× P(ai = 1)

)
+

1

2j+1

=

(
j−1∑
i=0

Rβ

(Rβ + 1)j−i
× (2i+1 − 1)Rβ + 1

2i+1(Rβ + 1)

)
+

1

2j+1

=
Rβ(1− 2−j)

Rβ + 1
+

1

2j+1
=

(2j+1 − 1)Rβ + 1

2j+1(Rβ + 1)
. (13)

That is, (12) is also true for t = j.

Equation (12) allows us to derive ∂E[at]
∂Rm,t−k

, the sensitivity of the expected allocation to

past returns. We first consider the case with k = 0. In this case,

∂E[at]
∂Rm,t

=
∂P(at = 1)

∂Rm,t

=

∂

[
Rβ

m,t

Rβ
m,t+1

P(at−1 = 1)

]
∂Rm,t

=
βRβ−1

m,t

(Rβ
m,t + 1)2

P(at−1 = 1) =
βRβ−1

(Rβ + 1)2
(2t − 1)Rβ + 1

2t(Rβ + 1)
. (14)
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As t goes to infinity, we obtain

lim
t→∞

∂E[at]
∂Rm,t

=
βR2β−1

(Rβ + 1)3
, (15)

which is the same as (9) when k = 0.
Next, we consider the case with k > 0. In this case,

∂P(at = 1)

∂Rm,t−k

=

(
t−1∑

i=t−k

Rβ
m,i+1

(Rβ
m,i+1 + 1)t−i

· ∂P(ai = 1)

∂Rm,t−k

)
+

∂

[
Rβ

m,t−k

(Rβ
m,t−k+1)k+1

P(at−k−1 = 1)

]
∂Rm,t−k

=

(
t−1∑

i=t−k

Rβ

(Rβ + 1)t−i
· ∂P(ai = 1)

∂Rm,t−k

)
+

βRβ−1 − kβR2β−1

(Rβ + 1)k+2
· P(at−k−1 = 1)

=
k−1∑
i=0

Rβ

(Rβ + 1)i+1
· ∂P(at−i−1 = 1)

∂Rm,t−k

+
βRβ−1 − kβR2β−1

(Rβ + 1)k+2
· (2

t−k − 1)Rβ + 1

2t−k(Rβ + 1)
. (16)

Suppose (9) is true for 0 ≤ k ≤ j − 1. Then

lim
t→∞

∂P(at = 1)

∂Rm,t−j

=

j−1∑
i=0

Rβ

(Rβ + 1)i+1
· lim
t→∞

∂P(at−i−1 = 1)

∂Rm,t−j

+
βRβ−1 − jβR2β−1

(Rβ + 1)j+2
· Rβ

Rβ + 1

=

(
j−1∑
i=0

Rβ

(Rβ + 1)i+1
· βR2β−1

(Rβ + 1)j−i+2

)
+

βRβ−1 − jβR2β−1

(Rβ + 1)j+2
· Rβ

Rβ + 1

=
jβR3β−1

(Rβ + 1)j+3
+

βR2β−1 − jβR3β−1

(Rβ + 1)j+3
=

βR2β−1

(Rβ + 1)j+3
. (17)

That is, (9) holds for k = j. Equation (17) completes an inductive proof of (9). ■

Theorem 2 (Model-based learning): Assume that α = 1, β > 0, γ = 0, Rf = 1, and
that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0.

Given these assumptions, the following result holds:

∂E[at]
∂Rm,t

=
βRβ−1

m,t

(Rβ
m,t + 1)2

,

∂E[at]
∂Rm,t−k

= 0, k > 0. (18)
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Proof: At any time t > 0,

Qt(0) = 0,

Qt(1) = log(Rm,t). (19)

The softmax rule implies

E[at] = P(at = 1) =
Rβ

m,t

Rβ
m,t + 1

. (20)

Taking the derivative of (20) with respect to Rm,t−k leads to (18). ■

Theorem 3 (Model-free learning): Assume that α ∈ (0, 1], β > 0, γ = 0, Rf = 1,
and that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Assume that
Rm,i ≡ R for all periods i ≥ 1. Further assume that, when an investor allocates money to
the stock market for the first time, the learning rate in the Q-learning algorithm is 1; all the
subsequent learning rates are set to α.

Given these assumptions, the following result holds:

lim
t→∞

∂E[at]
∂Rm,t−k

=
αβR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

Rβ + 1

)k

. (21)

Proof: Let [t] denote {0, 1, . . . , t} and [j, t] denote {j, j + 1, . . . , t}. Then, by definition,

∂E[at]
∂Rm,t−k

=
∑

(b0,...,bt−1)∈{0,1}t

∂ [P(at = 1|ai = bi,∀i ∈ [t− 1])P(ai = bi,∀i ∈ [t− 1])]

∂Rt−k

(22)

=
∑

(b0,...,bt−1)∈{0,1}t

∂P(at = 1|ai = bi,∀i ∈ [t− 1])

∂Rt−k

P(ai = bi,∀i ∈ [t− 1]) (23)

+
∑

(b0,...,bt−1)∈{0,1}t

∂P(ai = bi,∀i ∈ [t− 1])

∂Rt−k

P(at = 1|ai = bi,∀i ∈ [t− 1]).(24)

We analyze the expressions in (23) and (24) separately. First, we derive limt→∞ (23), the
limit of the expression in (23) as t goes to infinity. We have

∂P(at = 1|ai = bi,∀i ∈ [t− 1])

∂Rt−k

=
∂
(

eβQt(1)

eβQt(1)+1

)
∂Rt−k

=
1

(eβQt(1) + 1)2
∂eβQt(1)

∂Rt−k

. (25)

If bt−k−1 = 0, then Rt−k is never used to update theQ values; as such, ∂P(at=1|ai=bi,∀i∈[t−1])
∂Rt−k

= 0.

If, on the other hand, bt−k−1 = 1, then note that 1
(eβQt(1)+1)2

= 1
(Rβ+1)2

, because the Q value

for a 100% allocation to the stock market gets updated to log(R) when investors invest in
the stock market for the first time and then stays at log(R) afterwards.

To further derive ∂eβQt(1)

∂Rt−k
in (25), we let n denote the number of indices i, with i ∈

{t − k, . . . , t − 1} and bi = 1. We then proceed by considering two cases. The first case
is when b0 = b1 = . . . = bt−k−2 = 0. In this case, Qt(1) can be written as the sum of
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(1− α)n log(Rt−k) and a term unrelated to Rt−k. As such,

∂eβQt(1)

∂Rt−k

=
(1− α)nβeβQt(1)

R
= (1− α)nβRβ−1 (26)

and (25) can be simplified as

∂P(at = 1|ai = bi,∀i ∈ [t− 1])

∂Rt−k

=
(1− α)nβRβ−1

(Rβ + 1)2
. (27)

The second case is when b0, . . . , bt−k−2 are not all equal to zero. In this case, Qt(1) can
be written as the sum of α(1 − α)n log(Rt−k) and a term unrelated to Rt−k. As such, (25)
can be simplified as

∂P(at = 1|ai = bi,∀i ∈ [t− 1])

∂Rt−k

=
α(1− α)nβRβ−1

(Rβ + 1)2
. (28)

Substituting (27) and (28) back into (23), we obtain

(23) =
k∑

n=0

∑
(bt−k,...,bt−1)∈(0,1)k∑j=t−1
j=t−k bj=n, bt−k−1=1

(1− α)nβRβ−1

(Rβ + 1)2
P(ai=bi,∀i∈[t−k−1,t−1],

(a0,...,at−k−2)=(0,...,0))

+
k∑

n=0

∑
(bt−k,...,bt−1)∈(0,1)k∑j=t−1
j=t−k bj=n, bt−k−1=1

α(1− α)nβRβ−1

(Rβ + 1)2
P(ai=bi,∀i∈[t−k−1,t−1],

(a0,...,at−k−2 )̸=(0,...,0)). (29)

Note that

0 ≤ P(ai=bi,∀i∈[t−k−1,t−1],
(a0,...,at−k−2)=(0,...,0)) ≤ P((a0, . . . , at−k−2) = (0, . . . , 0)) =

1

2t−k−1
. (30)

Therefore limt→∞ P(ai=bi,∀i∈[t−k−1,t−1],
(a0,...,at−k−2)=(0,...,0)) = 0 and limt→∞ P(ai=bi,∀i∈[t−k−1,t−1],

(a0,...,at−k−2 )̸=(0,...,0)) = limt→∞ P(ai =
bi,∀i ∈ [t− k − 1, t− 1]). Also note that

P(at = 1) = P(at = 1|(a0, . . . , at−1) = (0, . . . , 0)) · P((a0, . . . , at−1) = (0, . . . , 0))

+P(at = 1|(a0, . . . , at−1) ̸= (0, . . . , 0)) · P((a0, . . . , at−1) ̸= (0, . . . , 0))

=
1

2

(
1

2

)t

+
Rβ

Rβ + 1

(
1−

(
1

2

)t
)
, (31)
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which means limt→∞ P(at = 1) = Rβ

Rβ+1
. These limiting results further imply

lim
t→∞

(23)

=
k∑

n=0

α(1− α)nβRβ−1

(Rβ + 1)2
lim
t→∞

∑
(bt−k,...,bt−1)∈(0,1)k∑j=t−1
j=t−k bj=n, bt−k−1=1

P(ai=bi,∀i∈[t−k−1,t−1],
(a0,...,at−k−2 )̸=(0,...,0))

=
k∑

n=0

α(1− α)nβRβ−1

(Rβ + 1)2

(
lim
t→∞

P(at−k−1 = 1)
)
lim
t→∞

∑
(bt−k,...,bt−1)∈(0,1)k∑j=t−1

j=t−k bj=n

P(ai=bi,∀i∈[t−k,t−1]|at−k−1=1)

=
k∑

n=0

α(1− α)nβRβ−1

(Rβ + 1)2
Rβ

Rβ + 1

(
k

n

)(
Rβ

Rβ + 1

)n(
1

Rβ + 1

)k−n

=
αβR2β−1

(Rβ + 1)3+k

k∑
n=0

(
k

n

)
(1− α)nRnβ

=
αβR2β−1

(Rβ + 1)3+k
(1 + (1− α)Rβ)k =

αβR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

Rβ + 1

)k

. (32)

We now turn to (24). We have

(24) =
∑

(b0,...,bt−1)∈{0,1}t
(b0,...,bt−1) ̸=(0,...,0)

∂P(ai = bi,∀i ∈ [t− 1])

∂Rt−k

Rβ

Rβ + 1

+
P((a0, . . . , at−1) = (0, . . . , 0))

∂Rt−k

· 1
2

=
∑

(b0,...,bt−1)∈{0,1}t

∂P(ai = bi,∀i ∈ [t− 1])

∂Rt−k

Rβ

Rβ + 1

+
P((a0, . . . , at−1) = (0, . . . , 0))

∂Rt−k

(
1

2
− Rβ

Rβ + 1

)
=

∂
∑

(b0,...,bt−1)∈{0,1}t P(ai = bi,∀i ∈ [t− 1])

∂Rt−k

Rβ

Rβ + 1

= 0. (33)

Finally, (32) and (33) together lead to (21). ■

Theorem 4 (Model-based learning): Assume that α ∈ (0, 1], β > 0, γ = 0, Rf = 1,
and that there are two possible allocations {0, 1}. Set Q0(0) = Q0(1) = 0. Assume that
Rm,i ≡ R for all periods i ≥ 1.
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Given these assumptions,

∂E[at]
∂Rm,t−k

=
αβRβ−1

(Rβ + 1)2
(1− α)k (34)

for 0 ≤ k < t− 1. For k = t− 1,

∂E[at]
∂Rm,1

=
βRβ−1

(Rβ + 1)2
(1− α)t−1. (35)

Proof: For t ≥ 1, we have

Qt(1)−Qt(0) = Ep
t (log(Rm,t+1))

= (1− α)t−1 log(Rm,1) + α
t∑

j=2

(1− α)t−j log(Rm,j)

= log(R). (36)

For 0 ≤ k < t− 1,
∂ (Qt(1)−Qt(0))

∂Rm,t−k

=
α(1− α)k

R
, (37)

and for k = t− 1,
∂ (Qt(1)−Qt(0))

∂Rm,1

=
(1− α)t−1

R
. (38)

We can express ∂E[at]
∂Rm,t−k

as follows

∂E[at]
∂Rm,t−k

=
∂
(

eβ(Qt(1)−Qt(0))

eβ(Qt(1)−Qt(0))+1

)
∂Rm,t−k

=
βeβ(Qt(1)−Qt(0))

(eβ(Qt(1)−Qt(0)) + 1)2
∂ (Qt(1)−Qt(0))

∂Rm,t−k

=
βRβ

(Rβ + 1)2
∂ (Qt(1)−Qt(0))

∂Rm,t−k

. (39)

Substituting (37) and (38) into (39) then gives (34) and (35), respectively. ■

Corollary (Insensitivity): The same assumptions from Theorems 3 and 4 apply. Under
model-free learning and as t → ∞, the sensitivity of allocations to beliefs is

∂E[at]
∂Ep

t (Rm,t+1)
≡ ∂E[at]/∂Rm,t

∂Ep
t [Rm,t+1]/∂Rm,t

=
βR2β−1

(Rβ + 1)3
. (40)
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Under model-based learning, the sensitivity of allocations to beliefs is

∂E[at]
∂Ep

t (Rm,t+1)
≡ ∂E[at]/∂Rm,t

∂Ep
t [Rm,t+1]/∂Rm,t

=
βRβ−1

(Rβ + 1)2
. (41)

For any R ≥ 0 and β > 0, the model-free sensitivity measure in (40) is strictly smaller than
the model-based sensitivity measure in (41).

Proof: The expected return is

Ep
t (Rm,t+1) = (1− α)t−1Rm,1 + α

t∑
j=2

(1− α)t−jRm,j.

As a result,
∂Ep

t (Rm,t+1)

∂Rm,t−k

=

{
α(1− α)k 0 ≤ k ≤ t− 1
(1− α)t−1 k = t− 1

. (42)

Combining equation (21) with (42) gives (40). Combining (34) and (35) with (42) gives (41).
Moreover, the ratio of (40) and (41) is

Rβ

Rβ + 1
< 1 (43)

for any R ≥ 0 and β > 0. ■

Corollary (frequency disconnect): The same assumptions from Theorems 3 and 4
apply. Under model-free learning and as t → ∞, there exists a k∗ such that, for 0 ≤ k < k∗,

∂E[at]
∂Rm,t−k

<
∂Ep

t (Rm,t+1)

∂Rm,t−k

,

and for k > k∗,
∂E[at]
∂Rm,t−k

>
∂Ep

t (Rm,t+1)

∂Rm,t−k

.

Under model-based learning,

∂E[at]
∂Rm,t−k

/
∂Ep

t (Rm,t+1)

∂Rm,t−k

=
βRβ−1

(Rβ + 1)2
(44)

is a constant independent of k.

Proof: For model-free learning, t → ∞, and k < t− 1, taking the ratio of (21) and (42)
gives

∂E[at]
∂Rm,t−k

/
∂Ep

t (Rm,t+1)

∂Rm,t−k

=
βR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

(Rβ + 1)(1− α)

)k

(45)
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for model-free learning. Note that

Rβ + 1− αRβ

(Rβ + 1)(1− α)
=

Rβ + 1− αRβ

Rβ + 1− αRβ − α
> 1.

So the right-hand side of (45) is a monotonically increasing function of k that goes to infinity
as k increases. When k = 0, this function equals

βR2β−1

(Rβ + 1)3
<

1

Rβ + 1
< 1. (46)

As a result, there exists a k∗ such that, for 0 ≤ k < k∗, the right-hand side of (45) is less
than one, and for k > k∗, it is greater than one.

For model-based learning, taking the ratio of (34)-(35) and (42) gives (44). ■

G. Computation of Completeness and Restrictiveness

In Section 5.4, we summarize an analysis of our framework’s “completeness” and “re-
strictiveness,” concepts put forward by Fudenberg et al. (2022) and Fudenberg, Gao, and
Liang (2025). In this section, we provide the details of the analysis.

We work with the 600 parameterizations described at the start of Section 4. These are
indexed by {ᾱ,∆, β, b, w}, where the values of the five parameters are drawn from the sets
ᾱ ∈ {0.2, 0.35, 0.5, 0.65, 0.8}, ∆ ∈ {0, 0.4}, β ∈ {10, 30, 50}, b ∈ {0, 0.0577, 0.115, 0.23}, and
w ∈ {0, 0.25, 0.5, 0.75, 1}. The remaining parameters are set to L = T = 30, γ = 0.97,
µ = 0.01, and σ = 0.2. We consider an economy with six cohorts and 100,000 investors in
each cohort. For each parameterization, we record the following 184 coefficients, which we
label “model outputs”:

� The first 30 coefficients are for cohort 1. They are the slope coefficients in a regression
of time-30 allocations on stock market returns from the past 30 years. Coefficient 1
is for the stock market return from 30 years ago, while coefficient 30 is for the stock
market return from last year.

� Coefficients 31 to 60, 61 to 90, 91 to 120, 121 to 150, and 151 to 180 are the analogs
of coefficients 1 to 30 for cohorts 2, 3, 4, 5, and 6, respectively.

� Coefficient 181 is the coefficient in a regression of final allocations on final beliefs; here,
we combine all six age cohorts.

� For coefficients 182 to 184, we run a regression of final beliefs on stock market returns
over the past 30 years, combining all six age cohorts. Coefficient 182 corresponds to
the stock market return from last year, coefficient 183 to the stock market return from
two years ago, and coefficient 184 to the stock market return from three years ago.

Given these model outputs, we compute the completeness measure as follows. For each of
the 600 parameterizations, we compare each of the first 180 recorded coefficients, normalized
for each cohort, with its empirical target, namely the cohort-specific weight based on the
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Malmendier and Nagel (2011) functional form. Specifically, for cohort n and the stock market
return from past year k, the weight is given by

w(k, n) =


(31− k − 5(n− 1))λ∑30−5(n−1)

k′=1 (31− k′ − 5(n− 1))λ
k ≤ 30− 5(n− 1)

0 k > 30− 5(n− 1)

, (47)

where λ = 1.3. We compare coefficient 181 with the empirical value of one, based on Giglio
et al. (2021). For the coefficients in the regression of final beliefs on stock market returns,
coefficient 182 is compared to the empirical value of 0.127; coefficient 183 is compared to the
empirical value of 0.037; and coefficient 184 is compared to the empirical value of 0.029. To
obtain these empirical values, we take monthly Gallup data from October 1996 to November
2011 on average investor beliefs about future one-year stock market returns and regress these
beliefs on past annual stock market returns. The coefficients on the returns one, two, and
three years in the past are 0.127, 0.037, and 0.029, respectively.

For each parameterization, we compute the sum of squared errors across the 184 coef-
ficients. The completeness measure is the smallest sum of squared errors among the 600
parameterizations. We find this to be 0.1145.

Next, we compute the restrictiveness measure. We create 100,000 simulated datasets.
Each simulated dataset is a 184-element vector. For each simulated dataset, coefficients 1 to
180, which summarize the potential dependence of allocations on past returns, are computed
as follows. First, we generate

ŵ(k, n) =


c1,n0 + c1,n1 (31− k) + c1,n2 (31− k)2∑30−5(n−1)

k′=1 [c1,n0 + c1,n1 (31− k′) + c1,n2 (31− k′)2]
k ≤ 30− 5(n− 1)

c2,n0 + c2,n1 (31− k) + c2,n2 (31− k)2∑30
k′=31−5(n−1) [c

2,n
0 + c2,n1 (31− k′) + c2,n2 (31− k′)2]

k > 30− 5(n− 1)

, (48)

where c1,n0 and c2,n0 are drawn from Unif(−0.5, 0.5), c1,n1 and c2,n1 are drawn from Unif(−0.5, 0.5)/30,
and c1,n2 and c2,n2 are drawn from Unif(−0.5, 0.5)/900; here, Unif(a, b) denotes the uniform
distribution between a and b. Second, we bound ŵ(k, n) from above by 1 and from below
by −1. These bounded ŵ(k, n) are the simulated coefficients 1 to 180. Intuitively, we are
using two polynomials with random coefficients to generate the dependence of allocations on
returns; the two polynomials correspond to the periods before and after the investors enter
financial markets. Coefficient 181, which represents the potential sensitivity of allocations
to beliefs, is randomly and uniformly drawn from the interval (0, 4); coefficients 182 to 184,
which represent the potential dependence of beliefs on past returns, are each randomly and
uniformly drawn from the interval (−0.2, 0.3).

For each of the 100,000 simulated datasets, we compute the minimum sum of squared
errors across the 600 parameterizations, where the squared errors are derived by comparing
the model outputs and the simulated coefficients described above. The restrictiveness mea-
sure is the average minimum sum of squared errors across the 100,000 simulated datasets.
We find this to be 2.897.
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H. Alternative Action Spaces

In Sections 3 and 4 of the main text, we focus on a particular set of possible actions: 11
percentage allocations to the stock market, {0%, 10%, . . . , 100%.} In Figure 3 of the main
text, we consider finer and coarser sets of percentage allocations. However, there are other
possible action spaces – for example, one where the investor chooses the number of shares of
the stock market that he wants to hold; or one where actions are defined relative to the prior
allocation, as in “choose an allocation 10% higher than before.” In a traditional model-based
framework, the choice of action space does not affect the investor’s behavior. In a setting
with model-free reinforcement learning, it may.

In this section, we study this issue. We repeat the main analyses in Sections 3 and
4 for the two alternative action spaces listed above. We find that, while there are some
quantitative changes in our results, particularly for the second alternative, the results are
nonetheless qualitatively similar. As such, we view the implications and applications of
Sections 3 and 4 as being robust to using these alternative action spaces.

Number of shares. We start by studying the action space where the investor chooses
the number of shares of the stock market that he wants to hold. We take the setting of Section
3, where the timeline runs from t = −L to t = T and where the model-based and model-free
systems begin operating at t = −L and t = 0, respectively. There are 300,000 investors.
At time 0, they each have $10,000 and the initial stock market price is $10 per share. The
action space at time 0 consists of 11 possible actions: {0 shares, 100 shares, 200 shares,. . . ,
1000 shares}. At each subsequent date t, as the investor’s wealth Wt and stock market price
Pt vary, the action space also shifts, and ranges from 0 shares to 100⌊Wt/(100Pt)⌋ shares in
increments of 100 shares.

Figure A9, the analog of Figure 1 in the main text for this alternative action space, plots
the dependence of the model-free, model-based, and hybrid allocations on past stock market
returns; the parameter values are the same as for Figure 1. We note that Figure A9 closely
resembles Figure 1.

Next, we revisit our applications from Section 4. To do so, we allow for six cohorts
of investors; for dispersion across investors in the learning rates αMF

± and αMB
± ; and for

generalization. Figure A10 presents the results for experience effects; it is the counterpart to
Figure 6, and the two figures use the same parameter values. Figure A11, which is the analog
of Figure 4, is for the frequency disconnect. Finally, for the benchmark parameter values,
the sensitivity of allocations to beliefs is 1.167. We note that, for all three applications, the
results for this alternative action space are very similar to the results in Sections 3 and 4 for
the original action space.

In producing the above results, we have to make an assumption as to which action
space the investor uses at time t + 1 to update the Q values – and specifically, to compute
maxa′ Q

MF
t (a′) and to implement generalization. For the results presented here, we assume

that the action space is the one the investor selected from at time t. We have repeated our
analysis for the case where, at time t+1, the investor updates using the action space he will
select from at time t+ 1. The results are almost identical.

Relative action choice. We now consider an alternative action space, one where the
investor’s possible actions are defined relative to the allocation chosen in the previous period.
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Figure A9. Analogous to Figure 1, the graph shows how the allocations recom-
mended by the model-free, model-based, and hybrid systems depend on past stock
market returns. In contrast to Figure 1, investors choose how many shares of the
market to hold. There are 300,000 investors. We set L = T = 30, αMF

± = αMB
± = 0.5,

β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and b = 0. In the case of the hybrid system,
w = 0.5.

Specifically, there are three possible allocations: “keep the allocation the same as before,”
“choose an allocation that is 10% higher than the previous allocation,” and “choose an
allocation that is 10% lower than the previous allocation.” We denote this action space as
{−0.1, 0, 0.1}. In contrast to much of the analysis in the main text, we now introduce a state
variable, namely the “pre-adjustment” stock market allocation – the percentage allocation
to the stock market prior to any adjustment of –10%, 0%, or 10%; it is natural that, whether
an investor wants to increase or decrease his allocation to the stock market should depend
on whether his pre-adjustment allocation was high or low.

The model-free updating rule, in the absence of generalization, is

QMF
t+1 (at, wt−) = QMF

t (at, wt−)

+αMF
t,±

logRp,t+1(wt− + at) + γmax
a′

QMF
t (a′,

(wt−+at)Rm,t+1

(wt−+at)Rm,t+1+(1−wt−−at)Rf︸ ︷︷ ︸
w(t+1)−

)−QMF
t (at, wt−)

 ,(49)

where wt− is the time-t portfolio weight the investor assigns to the stock market prior to
making the adjustment based on action at.

The timing of the updating rule is as follows. At time t−, the investor has the pre-
adjustment portfolio weight wt− ; this is the current fraction of his wealth invested in the
stock market. He then chooses an action at. His post-adjustment portfolio weight at time t
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Figure A10. Analogous to Figure 6, the graph shows how the allocations of each
of the six cohorts depend on past stock market returns. In contrast to Figure 6,
investors choose how many shares of the market to hold. There are 300,000 investors.
We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5, µ = 0.01, σ = 0.2, b = 0,
and w = 0.5.

is then wt− + at. If, at any time, wt− + at is above 100%, it is capped at 100%; and if it is
below 0%, it is floored at 0%. One period later, at time (t + 1)−, given the realized stock
market return from t to t+ 1, namely, Rm,t+1, the new pre-adjustment portfolio weight is

w(t+1)− =
(wt− + at)Rm,t+1

(wt− + at)Rm,t+1 + (1− wt− − at)Rf

. (50)

The investor then chooses an action at+1, and the post-adjustment portfolio weight at time
t+ 1 is w(t+1)− + at+1. This process repeats over time.

Despite the fact that action a can take only three discrete values, namely –10%, 0%, or
10%, the portfolio weight wt− takes continuous values because the stock market return itself
takes continuous values. To make the above algorithm tractable – to avoid having a state
variable that can take an infinite number of values – we make an approximation and have
only a finite set of 11 states {0%, 10%, 20%, . . ., 100%}. The updating rule becomes

QMF
t+1 (at, st−) = QMF

t (at, st−)

+αMF
t,±

(
logRp,t+1(wt− + at) + γmax

a′
QMF

t (a′, s(t+1)−)−QMF
t (at, st−)

)
, (51)

where st− is the state among the 11 possible states that is closest to wt− ; that is, |st−−wt− | ≤
5%.

We now turn to model-based learning. Here, for all three possible values of action a, the
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Figure A11. Analogous to Figure 4, the graph shows how investors’ allocations and
beliefs at time 30 depend on the past 30 years of stock market returns. In contrast
to Figure 4, investors choose how many shares of the market to hold. There are
300,000 investors. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5,
µ = 0.01, σ = 0.2, b = 0, and w = 0.5.

algorithm is given by

QMB
t (a, st−) = Ep

t

[
log
(
(1− a− wt−)Rf + (a+ wt−)Rm,t+1

)]
+

γ

1− γ
Ep

t

[
log
(
(1− a∗ − wt−)Rf + (a∗ + wt−)Rm,t+1

)]
, (52)

where
a∗ = argmax

a
Ep

t

[
log
(
(1− a− wt−)Rf + (a+ wt−)Rm,t+1

)]
. (53)

The updating rule for the probability distribution is the same as that in the main text.
We note three things. First, as before, if a+wt− is above 100%, it is capped at 100%; and

if it is below 0%, it is floored at 0%. Second, the algorithm in (52) assumes that investors
are myopic: they think a∗ +wt− is the optimal allocation for all future periods; they do not
think about transitions from one state to another. Finally, for each time period t, we need
update only the model-based Q values for state st− ; the Q values for other states do not
matter when investors make decisions at time t.

The specifications of model-free learning and model-based learning also allow us to ex-
amine the hybrid model, one that assigns equal weight to the two learning systems.

We now implement the above structure and examine how the allocations recommended
by the model-free, model-based, and hybrid systems depend on the past 30 years of stock
market returns. There are 300,000 investors. At time 0, we randomly select w0− from the
11 possible allocations {0%, 10%, . . . , 100%}. The parameter values are the same as those in
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Figure 1 of the main text.
Figure A12 presents the results. While they differ quantitatively from those in Figure 1,

its counterpart in the main text, they are qualitatively similar.
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Figure A12. Analogous to Figure 1, the graph shows how the allocations recom-
mended by the model-free, model-based, and hybrid systems depend on the past 30
years of stock market returns. In contrast to Figure 1, investors’ actions are defined
relative to the previous period’s allocations. There are 300,000 investors. We set
L = T = 30, αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and b = 0. In

the case of the hybrid system, w = 0.5.

Given that Figure A12 is structurally similar to Figure 1 in the main text, we would expect
to observe a frequency disconnect, insensitivity of allocations to beliefs, and experience effects
even for this alternative action space. We confirm that this is the case; while there are some
quantitative differences, the results are qualitatively the same as in the main text.

J. Comparison with Models of Inattention

One of the properties of model-free learning is that it generates inertia in investor alloca-
tions. It is therefore natural to compare our framework to another framework that is often
used to think about inertia in allocations, one based on investor inattention.

We consider three models of inattention. All three take the model-based component of our
framework, discard the model-free component, and instead introduce a form of inattention.

In the first approach, each investor updates his beliefs about stock market returns at
each date as in equations (17)-(18) in the main text. With probability p, he is attentive and
also makes an active adjustment to his portfolio allocation: he computes the model-based Q
values in (19)-(20) in the main text and then chooses an action probabilistically according
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to

p(at = a) =
exp(βQMB

t (a))∑
a′ exp(β

MB
t (a′))

.

However, with probability 1 − p, he is not attentive, and his allocation drifts passively, so
that

at =
at−1Rm,t

at−1Rm,t + (1− at−1)
.

In our second approach to modeling inattention, the investor again updates his beliefs in
each period according to equations (17)-(18) in the main text. Moreover, in each period, he
updates the model-based Q values of all allocations, as in (19)-(20) in the main text. Finally,
in each period, he checks whether the expected Q value of his new allocation, if he did make
an active choice, exceeds the Q value of his previously-chosen allocation by more than some
transaction cost c: ∑

a′ exp(βQ
MB
t (a′))QMB

t (a′)∑
a′ exp(βQ

MB
t (a′))

−QMB
t (ât−1) > c. (54)

If this condition is satisfied, the investor chooses an action probabilistically, according to
current Q values. Otherwise, his allocation continues to drift passively, so that

at =
at−1Rm,t

at−1Rm,t + (1− at−1)
.

In equation (54), ât−1 is the allocation in the set {0%, 10%, . . . , 100%} that is closest to at−1;
since we have Q values only for the 11 feasible allocations, we approximate QMB(at−1) by
QMB(ât−1).

Both of the above inattention models assume that the investor can effortlessly update
his beliefs in each period. In reality, however, the investor may find it just as effortful to
update his beliefs as to change his allocation. We therefore consider a third model, a variant
of the first, in which, at each time, the investor is inattentive with probability 1 − p and
updates neither his beliefs nor his allocation; and with probability p, he updates his beliefs
and model-based Q values based on all the returns realized since his last belief update and
then chooses an action probabilistically based on the Q values.

We now analyze all three models in detail. In particular, we look at their predictions for
the main applications in Section 4: the frequency disconnect, the insensitivity of allocations
to beliefs, experience effects, and inertia. Throughout, there are 300,000 investors in six
cohorts of 50,000 each. The parameter values are αMB

± = 0.5, β = 30, γ = 0.97, µ = 0.01,
and σ = 0.2.

For the first model of inattention, we have studied six possible values of p, namely 1, 0.75,
0.5, 0.25, 0.1, and 0.02; the results we present here are for the case of p = 0.1. Figure A13,
the analog of Figure 4 in the main text, presents the results for the frequency disconnect.
Figure A14, the analog of Figure 6, presents results for experience effects. For the parameter
values we use here, the sensitivity of allocations to beliefs is 0.703.

For the second inattention model, we have studied seven possible values of c: −∞, 0,
0.01, 0.05, 0.1, 0.15, and 0.2; we illustrate the results here for the case of c = 0.15.
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Figure A13. Analogous to Figure 4, the graph shows how investors’ allocations and
beliefs at time 30 depend on the past 30 years of stock market returns. In contrast
to Figure 4, investors do not use model-free learning, but rather are inattentive
model-based investors. There are 300,000 investors in six cohorts of 50,000 each.
The parameter values are L = T = 30, αMB

± = 0.5, β = 30, γ = 0.97, µ = 0.01,
σ = 0.2, and p = 0.1.

Figure A15, the analog of Figure 4, presents the results for the frequency disconnect;
Figure A16, the analog of Figure 6, presents the results for the case of experience effects.
For c = 0.15, the sensitivity of allocations to beliefs is 1.062.

The results for these two inattention models are similar: they can generate a frequency
disconnect and insensitivity of allocations to beliefs. Interestingly, though, they make a pre-
diction about experience effects that is quite different from that of our framework, namely
that, if an investor enters financial markets at time t, his allocation at time T will typically
put more weight on the most recent return he did not experience, Rm,t, than on the first
return he did experience, Rm,t+1. The reason is that, when an investor enters financial mar-
kets, he is paying attention, and so takes account of the return just before he enters, Rm,t.
However, one year later, he may not be paying attention and may therefore not account for
the return at that time, Rm,t+1. By contrast, our Section 2 framework makes the opposite
prediction, one that is more in line with the evidence on experience effects, namely that the
investor will put more weight on Rm,t+1 than on Rm,t.

Finally, we analyze the third inattention model, one in which the investor is inattentive
in updating both beliefs and allocations. We find that the results here are similar to those of
the first two inattention models on most dimensions: this model also has trouble generating
realistic experience effects. However, it differs from our framework in its predictions in an
additional important way: it is less able to generate insensitivity of allocations to beliefs; for
p = 0.1, it generates a sensitivity of 1.769, which is more than double the insensitivity for
the first inattention model, namely 0.703.
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Figure A14. Analogous to Figure 6, the graph shows how the allocations of each
of the six cohorts depend on past stock market returns. In contrast to Figure 6,
investors do not use model-free learning, but rather are inattentive model-based
investors. There are 300,000 investors in six cohorts of 50,000 each. The parameter
values are L = T = 30, αMB

± = 0.5, β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and
p = 0.1.

K. Parameter Estimation

In this section, we describe the procedure that we use to estimate the values of four
important parameters in our framework: the mean model-based learning rate across investors
ᾱMB; the mean model-free learning rate ᾱMF ; the exploration parameter β; and the weight
w on the model-based system. We do the estimation in two steps. We first use data on
investor beliefs to estimate ᾱMB. We then estimate ᾱMF , β, and w by targeting two facts
discussed in Section 4 of the paper, namely the sensitivity of allocations to beliefs in Giglio et
al. (2021) and the experience effect in Malmendier and Nagel (2011). We keep the remaining
parameters at their benchmark values, namely L = T = 30, γ = 0.97, ∆ = 0.5, µ = 0.01,
σ = 0.2, and b = 0.0577.5

We estimate the mean model-based learning rate ᾱMB by searching for the value of
this parameter that best fits the empirical relationship between investor beliefs and past
market returns. Specifically, as in Greenwood and Shleifer (2014), we take monthly Gallup
data from October 1996 to November 2011 on average investor beliefs about future one-year
stock market returns and regress these beliefs on past annual stock market returns. The
coefficients on the returns one, two, and three years in the past are 0.127, 0.037, and 0.029,
respectively; the ratio of the second coefficient to the first is 0.29 and the ratio of the third
coefficient to the second is 0.77. We search for a value of ᾱMB that, in simulated data from

5We have repeated the estimation analysis for other values of these parameters and find that our main
result – that the data are best explained by a framework that puts substantial weight on both the model-free
and model-based systems – continues to hold.
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Figure A15. Analogous to Figure 4, the graph shows how investors’ allocations and
beliefs at time 30 depend on the past 30 years of stock market returns. In contrast
to Figure 4, investors do not use model-free learning, but rather are inattentive
model-based investors. There are 300,000 investors in six cohorts of 50,000 each.
The parameter values are L = T = 30, αMB

± = 0.5, β = 30, γ = 0.97, µ = 0.01,
σ = 0.2, and c = 0.15.

the model-based system, best matches the first coefficient, 0.127, and the two subsequent
rates of decline in the coefficients, 0.29 and 0.77; intuitively, we are trying to match the level
and slope of the relationship between beliefs and returns.

To do this, we take 300, 000 investors in six cohorts of 50, 000 each; each investor sees a
different sequence of stock market returns from time t = −L to time t = T . For a given value
of ᾱMB, we draw each investor’s model-based learning rates, αMB

+ and αMB
− , from a uniform

distribution centered at ᾱMB and with width ∆ = 0.5. We then compute investor beliefs
at each time, as determined by the model-based system and in particular by equations (17)
and (18) in the main text. Finally, we regress investors’ beliefs at time T on the past 30
years of stock market returns they have been exposed to, and record the coefficients c1, c2,
and c3 on the annual returns one, two, and three years in the past, respectively. We repeat
this exercise for many different values of ᾱMB and select the value of ᾱMB that minimizes

(c1 − 0.127)2 + (
c2
c1

− 0.29)2 + (
c3
c2

− 0.77)2. (55)

We find this to be ᾱMB = 0.33.
With this value of ᾱMB in hand, we search for values of ᾱMF , β, and w that best match

two empirical targets. The first is the coefficient in a regression of investor allocations on
investor beliefs, which Giglio et al. (2021) find to be approximately one. For given values of
ᾱMF , β, and w, we can compute this coefficient, d, in simulated data from our framework.
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Figure A16. Analogous to Figure 6, the graph shows how the allocations of each
of the six cohorts depend on past stock market returns. In contrast to Figure 6,
investors do not use model-free learning, but rather are inattentive model-based
investors. There are 300,000 investors in six cohorts of 50,000 each. The parameter
values are L = T = 30, αMB

± = 0.5, β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and
c = 0.15.

Due to computational constraints, these simulated data are now based on 60,000 investors
in six cohorts of 10,000 each.

Our second target is the functional form in (25) in the main text with λ = 1.3, which
Malmendier and Nagel (2011) use to capture empirical experience effects. Intuitively, we are
looking for parameter values that minimize the distance between unnormalized versions of
the solid and the dashed lines in the six graphs in Figure 6. For given values of ᾱMF , β, and
w, and for cohort 1, we run a regression in our simulated data of the time-T allocations on
the past 30 years of returns. We then compute another vector of 30 coefficients given by

0.972
(31− j)1.3∑30
l=1(31− l)1.3

, j = 1, 2, . . . , 30,

which, according to column (i) in Table IV of Malmendier and Nagel (2011), captures the
empirical relationship between allocations and returns j years in the past for a cohort of age
30. We then compute the L2 norm of the difference between the two vectors and call this
SSE1, the sum of squared errors for cohort 1. In a similar way, we compute SSEi for i = 2
to 6, which correspond to cohorts 2 through 6.

We repeat the above exercise for many values of {ᾱMF , β, w}. In particular, for many
values of {ᾱMF , β, w}, we compute

(d− 1)2 +
6∑

i=1

SSEi (56)
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and identify the parameter values that minimize this quantity. The first term in (56) targets
the empirical sensitivity of allocations to beliefs, while the second term targets the empirical
experience effects. We find that the parameter values that minimize (56) are ᾱMF = 0.26,
β = 20, and w = 0.38. The estimate of w in particular indicates that our framework can
best match the empirical facts when it puts substantial weight on both the model-free and
model-based systems.

L. System Performance and an Analysis of State Dependence

We have noted two reasons why model-free learning may play at least some role in investor
decision-making: it is likely to engage automatically whenever the investor is experiencing
rewards; and for an investor who feels that he does not have a good model of the environment,
the brain is all the more likely to assign some control to the model-free system.

There is one more reason why the model-free system may influence decision-making. For
an investor with a poor understanding of financial markets, and whose model-based system
is therefore flawed, the model-free system’s performance may be at least as good as that
of the model-based system. As a consequence, even if the investor becomes aware of the
influence of the model-free system on his behavior, he may continue to rely on it.

We can illustrate this point quantitatively. For the setting of Section 2 with i.i.d market
returns, and for the parameter values and simulation structure in the caption to Figure 1,
we find that the performance of the model-free system is similar to that of the model-based
system. When investors use only the model-free system to make decisions, the mean and
standard deviation of their per-period excess portfolio returns between t = 0 and t = 30, av-
eraged across the 300,000 investors in the simulation, are 1.72% and 12.69%, respectively. By
comparison, for investors who use only the model-based system, the corresponding numbers
are 1.58% and 12.66%.

These numbers may understate the effectiveness of the model-free system. To illustrate
this, we replace the i.i.d return structure of Section 2 with one that captures the long-run
mean-reversion seen in some asset classes. In words, if a weighted average of the risky
asset’s prior returns is high, then its subsequent mean return is low; if its prior returns are
moderate, then its subsequent mean return is also moderate; and if its prior returns are low,
then its subsequent mean return is high. An analysis of this case necessarily introduces a
state variable, namely the asset’s past return.

Specifically, at each time t, we define the recent trend of asset returns as

Sm,t = (1− θ)
t−1∑
i=0

θiRm,t−i + θtSm,0, (57)

where 0 < θ < 1 is a decay parameter and Sm,0 is the initial level of the trend at t = 0. We
specify asset returns so that a good past trend is followed, on average, by low returns, and a
bad trend is followed, on average, by high returns. Formally, if Sm,t > S, the next period’s
return is governed by

logRm,t+1 = µL + σεt+1, (58)
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where µL has a low value; we call this the Low state, L. If Sm,t < S, the next period’s return
is governed by

logRm,t+1 = µH + σεt+1, (59)

where µH has a high value; we call this the High state, H. Finally, if S ≤ Sm,t ≤ S, the next
period’s return is governed by

logRm,t+1 = µM + σεt+1, (60)

where µM takes a moderate value; we call this the Moderate state, M . In each case, εt+1 is
drawn from a standard Normal distribution, independently of other shocks.

If an investor fails to recognize the existence of the three market states, L, M , and H,
then, to update his Q values, QMF

t (a) and QMB
t (a), he follows the model-free and model-

based algorithms described in Sections 2.2 and 2.3 of the main text. If the investor is able to
recognize and observe the three states, his learning algorithms are different. For model-free
learning, the Q values are updated according to

QMF
t+1 (st, a) = QMF

t (st, a) + αMF
t,± [logRp,t+1 + γmax

a′
QMF

t (st+1, a
′)−QMF

t (st, a)] (61)

at time t + 1, where st and st+1 can be L, M , or H. For simplicity, we do not consider
generalization.

For model-based learning, following a market return Rm,t+1 = R, the probability esti-
mates are updated according to

pt+1(Rm = R, st) = pt(Rm = R, st) + αMB
t,± [1− pt(Rm = R, st)] (62)

at time t + 1; the learning rate αMB
t,+ applies when R > 1 and the learning rate αMB

t,− ap-
plies when R ≤ 1. These probability estimates allow the investor to perceive three return
distributions, one for each state. We define the model-based Q values at time t as follows:

QMB
t (st = L, a) = Ep,L

t log((1− a)Rf + aRm,t+1) + γ(χLHV H + χLMV M + χLLV L),

QMB
t (st = M,a) = Ep,M

t log((1− a)Rf + aRm,t+1) + γ(χMHV H + χMMV M + χMLV L),

QMB
t (st = H, a) = Ep,H

t log((1− a)Rf + aRm,t+1) + γ(χHHV H + χHMV M + χHLV L),(63)

where Ep,s
t represents the investor’s perceived return distribution in state s at time t, χs1,s2

represents the investor’s perceived transition probability from state s1 at time t to state s2
at time t+ 1, and V s represents the investor’s perceived optimal valuation of state s.

The hybrid Q values are

QHY B
t (st, a) = (1− w)QMF

t (st, a) + wQMB
t (st, a). (64)

Finally, the investor chooses her portfolio allocation probabilistically, according to

p(st, at = a) =
exp[βQHY B

t (st, a)]∑
a′ exp[βQ

HY B
t (st, a′)]

. (65)
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Equation (65) shows that the values of χs1,s2 and V s do not affect the investor’s allocation
choice: within each state, the part of QHY B

t in the numerator of equation (65) that contains
χs1,s2 and V s is cancelled out by the same term in the denominator.

We now present some numerical analysis. The parameters σ, αMF
t,± , αMB

t,± , γ, w, and β
take the baseline values used in Figure 1 of the paper. In addition, we set θ = 0.8, µH = 6%,
µM = 1%, µL = −4%, S = exp(µM+0.5σ2)+3% = 1.0605, and S = exp(µM+0.5σ2)−3% =
1.0005. The simulation setup is the same as in Figure 1; in particular, there are 300,000
investors. We consider two cases: the case where investors do not recognize the existence
of the three states, and the case where they do recognize and observe the three states. In
each case, we study the performance and recommended allocations of the model-free system,
the model-based system, and the hybrid system. To evaluate performance, we look at each
investor’s excess portfolio return from t to t+ 1, where t goes from 0 to 29; we compute the
mean and standard deviation of these 30 excess returns for each investor; finally, we average
these numbers across the 300,000 investors. To study allocations, we look at each investor’s
portfolio allocation at time 30; we then average these allocations across the investors who
are facing an asset that is in state s at time 30, where s is L, M , or H.

The table below presents the performance measures and allocations for the model-free,
model-based, and hybrid systems in the case where the algorithms do not recognize the
existence of the three states:

mean stdev aL aM aH
MF 1.61% 12.99% 60.53% 57.50% 49.79%
MB 0.96% 12.77% 75.24% 52.54% 29.06%

hybrid 1.20% 12.67% 67.59% 53.73% 37.18%

The table below presents the performance measures and allocations for the model-free,
model-based, and hybrid systems in the case where the algorithms do recognize the exis-
tence of the three states:

mean stdev aL aM aH
MF 1.77% 12.98% 49.15% 53.03% 59.41%
MB 1.94% 13.25% 41.97% 51.99% 61.69%

hybrid 1.89% 13.05% 43.04% 52.23% 62.77%

We make three observations about these results.
When investors do not recognize the three market states, the model-free system signifi-

cantly outperforms the model-based system: the mean excess portfolio return is 1.61% for
the model-free system but only 0.96% for the model-based system, while the standard devi-
ation of portfolio returns is similar for the two systems. As shown in Section 3 of the paper,
the model-free system is less extrapolative than the model-based system, and this is valuable
when there is mean-reversion in asset returns.
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When investors do recognize the three market states, the two systems have fairly similar
performance: the mean excess portfolio return is 1.94% for the model-based system and
1.77% for the model-free system. On the one hand, the slow learning of the model-free
system means that this system is slower to recognize the lower (higher) returns in the Low
(High) state, which is costly. At the same time, this system also exhibits a less extrapolative
asset demand, which is beneficial.

When the model-based system is able to recognize the three market states but the model-
free system is not, a tension arises between the two systems. Following a sequence of good
returns, the model-free system recommends a high allocation: when Sm,t > S, the average
allocation recommended by the state-independent model-free system is 60.53%, higher than
what it recommends in the Moderate state. By contrast, the model-based system recognizes
that a good trend is often followed by low returns and hence recommends a low allocation:
when Sm,t > S, the average allocation recommended by the state-dependent model-based
system is 41.97%, lower than what it recommends in the Moderate state. One system
therefore pulls the investor toward a higher allocation in the Low state, while the other pulls
him toward a lower allocation.

M. SARSA: An Alternative Model-free Framework

The model-free frameworks most widely used by psychologists are Q-learning and SARSA.
In the main text, we focus on Q-learning. In this section, we consider SARSA instead. In
particular, we examine how the stock market allocation recommended by SARSA depends on
past market returns. We find that the results for SARSA are similar to those for Q-learning:
relative to model-based learning, SARSA and Q-learning both put substantially more weight
on distant past market returns.

We first describe how SARSA works. At time 0, all Q values are set to zero: QMF
0 (a) = 0,

∀a. The investor chooses one of the possible allocations with equal probability; we denote
this initial allocation by a0. At each subsequent time t, the investor observes the portfolio
return Rp,t generated by the stock market return Rm,t and by at−1, his time t− 1 allocation.
He then chooses his allocation at probabilistically, according to

p(at = a) =
exp[βQMF

t−1 (a)]∑
a′ exp[βQ

MF
t−1 (a

′)]
, (66)

and given Rp,t and at, he updates the Q value of his previous allocation at−1 from QMF
t−1 (at−1)

to QMF
t (at−1) according to

QMF
t (at−1) = QMF

t−1 (at−1) + αMF
t−1,±

[
logRp,t + γQMF

t−1 (at)−QMF
t−1 (at−1)

]
. (67)

Analogous to the analysis in Section 3, we examine how investors’ date-T allocations aT
recommended by each of SARSA, Q-learning, and model-based learning depend on the past
market returns investors have been exposed to. Figure A17 presents the results. We make
two observations. First, for SARSA and Q-learning, the weights the allocation aT puts on
past stock market returns are quantitatively similar. The only exception is the weight on the
most recent stock market return: in the case of SARSA, the allocation aT is determined by
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Q values that do not depend on the most recent return Rm,T ; this allocation therefore puts
zero weight on Rm,T . Second, while the allocation recommended by model-based learning
depends primarily on recent past returns, the allocations recommended by both Q-learning
and SARSA depend significantly even on distant past returns.
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Figure A17. We run a regression of investors’ allocations to the stock market aT
at time T on the past 30 years of stock market returns {Rm,T+1−j}30j=1 investors
were exposed to and plot the coefficients for three cases: model-based learning;
model-free Q-learning; and model-free SARSA. There are 300,000 investors. We set
L = T = 30, αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and b = 0, so

that there is no generalization.
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