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Abstract
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ing to prospect theory and examine its ability to explain 22 prominent stock market

anomalies. The model incorporates all the elements of prospect theory, takes account

of investors’ prior gains and losses, and makes quantitative predictions about an as-

set’s average return based on empirical estimates of its volatility, skewness, and past

capital gain. We find that the model is helpful for thinking about a majority of the 22
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1 Introduction

Prospect theory, due to Kahneman and Tversky (1979, 1992), is a highly influential theory of

decision-making under risk. In a parsimonious way, it captures a wide range of experimental

evidence on attitudes to risk. As such, it has the potential to shed light on asset prices and

investor behavior. However, despite years of effort, we still do not understand its implications

for some basic aspects of asset prices, such as the cross-section of average returns. Under

mean-variance preferences, average returns are described by the CAPM. But what determines

average returns when investors instead evaluate risk according to prospect theory? What

does prospect theory predict about the relative average returns of small-cap stocks and large-

cap stocks, or of value stocks and growth stocks? Full answers to these basic questions are

still not available.

In this paper, we answer these questions. We build a new model of asset prices that

incorporates prospect theory, as well as a related concept known as narrow framing, into

investor preferences. We show how the model can be used to make quantitative predictions

about the cross-section of average returns. In our main application, we take 22 prominent

stock market anomalies and examine whether our model can help explain them. We find

that the model is able to shed light on a majority of these anomalies.

Prospect theory posits that people evaluate risk using a utility function that is defined

over gains and losses; that has a kink at its origin, capturing a greater sensitivity to losses

than to gains (“loss aversion”); and that is concave over gains and convex over losses, captur-

ing risk aversion over moderate-probability gains and risk-seeking over moderate-probability

losses (“diminishing sensitivity”). It also states that people weight outcomes not by objective

probabilities but by transformed probabilities that overweight the tails of the distribution

they are thinking about (“probability weighting”). Prospect theory is often implemented in

conjunction with narrow framing, a phenomenon observed in experimental studies whereby,

when an individual is thinking about taking on a new risk, he evaluates it to some extent in

isolation, separately from his other risks.

Intuition and prior research suggest that, in an economy with prospect theory investors

who engage in narrow framing, the price of an asset will depend in part on three asset char-

acteristics: the volatility of the asset’s returns; the skewness of the asset’s returns; and the

average prior gain or loss since purchase across investors holding the asset, a quantity known

as the asset’s “capital gain overhang” (Grinblatt and Han, 2005). All else equal, investors

require a higher average return on more volatile assets: since these investors evaluate each

asset to some extent in isolation, and since they are loss averse, they find assets with volatile
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returns unappealing. All else equal, investors require a lower average return on assets with

more positively-skewed returns: since these investors focus on an asset’s own distribution of

potential gains and losses, and since they overweight the tails of this distribution, they find

assets with positively-skewed returns attractive. Finally, the utility function’s concavity over

gains and convexity over losses mean that, all else equal, investors require a higher average

return on assets where they have larger prior gains.1

The above intuitions indicate that, to understand prospect theory’s implications for asset

prices, we need a model that incorporates all the elements of prospect theory and accounts

for investors’ prior gains and losses in each risky asset. No existing model of asset prices

fulfills both conditions; we therefore build a new one that does. In our model, investor

preferences have two components. The first is traditional mean-variance preferences; taken

alone, they lead to the CAPM. The second embeds prospect theory and narrow framing.

While our model has a simple structure, solving for equilibrium prices presents a chal-

lenge. In the model, all investors are identical. In an Expected Utility framework, this would

imply that, in equilibrium, all investors hold identical portfolios. Strikingly, such an equi-

librium does not exist once we introduce prospect theory preferences. To break this logjam,

we construct an alternative equilibrium, one in which investors hold different portfolios that

correspond to non-unique optima of their objective function. With this equilibrium structure

in hand, we are able to generate quantitative predictions about the expected return on any

risky asset.

In our main application, we examine whether the model can explain 22 prominent stock

market anomalies. To see if our model can explain a particular anomaly – the size anomaly,

say – we compute what it predicts for the average return of the typical small-cap stock. As

explained above, this average return will depend on the return volatility, return skewness,

and capital gain overhang of the typical small-cap stock. We estimate these quantities from

historical U.S. data, plug them into our model, and record the model’s prediction for the

average return of a typical small-cap stock. We repeat this process for the typical stock in

each of the ten market capitalization deciles. The results reveal how much, if any, of the size

anomaly our model can explain. We proceed in the same way for all 22 anomalies.

Our empirical estimates of the volatility, skewness, and gain overhang of the typical

stock in each anomaly decile are interesting in their own right. We find that the three

characteristics are strongly correlated across anomaly deciles: if the typical stock in decile

1The three intuitions described here are outlined in Barberis and Huang (2001) and Li and Yang (2013);
in Section III.G of Barberis and Huang (2008); and in Grinblatt and Han (2005) and Li and Yang (2013),
respectively.
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1 for some anomaly has more volatile returns than the typical stock in decile 10 for that

anomaly, then it almost always also has more positively-skewed returns and a more negative

gain overhang. For example, in the case of the size anomaly, the typical small-cap stock not

only has more volatile returns than the typical large-cap stock, but also has more skewed

returns and a more negative gain overhang.

This last observation points to the necessity of the quantitative approach we take in this

paper. Consider again the size anomaly. Empirically, the returns of the typical small-cap

stock are much more volatile than those of the typical large-cap stock. All else equal, this

leads prospect theory investors who engage in narrow framing to charge a higher average

return on small-cap stocks than on large-cap stocks, thereby helping to explain the size

anomaly. However, the typical small-cap stock also has more positively-skewed returns, and

a more negative gain overhang, than the typical large-cap stock. All else equal, these two

factors lead prospect theory investors to charge a lower average return on small-cap stocks,

thereby hampering the model’s ability to explain the size anomaly. It is only through a

quantitative, model-based approach like the one we present here that we can find out what

the overall prediction of prospect theory for the size anomaly is, once all of these factors are

properly combined.

We find that our model can help explain 13 of the 22 anomalies we consider, in the sense

that it predicts a higher CAPM alpha for the extreme anomaly decile portfolio that actually

has a higher alpha, empirically. These are the momentum, failure probability, idiosyncratic

volatility, gross profitability, expected idiosyncratic skewness, return on assets, maximum

daily return, O-score, external finance, composite equity issuance, net stock issuance, post-

earnings announcement drift, and difference of opinion anomalies. The model explains these

anomalies in the same way. For each of these 13 anomalies, the typical stock in the extreme

decile with the lower average return is more highly skewed, more volatile, and has a lower

gain overhang than the typical stock in the other extreme decile. The greater skewness and

lower gain overhang of the former stock leads investors to charge a lower average return

on it, while its higher volatility leads investors to charge a higher average return on it.

Quantitatively, the first effect dominates. As a consequence, our model’s prediction about

the anomaly is in line with the empirical facts. To evaluate the model’s performance more

formally, we compare its average absolute pricing error across the 22 anomalies to that of

several widely-used factor models. Our model achieves similar performance to the Carhart

four-factor model – a striking result, given that the Carhart model was designed in full

knowledge of several major anomalies, while ours was not.

For some anomalies, most notably the size and value anomalies, our model performs
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poorly. For example, value stocks are more highly skewed and have a more negative gain

overhang than growth stocks. All else equal, this leads prospect theory investors to charge

a lower average return on value stocks. However, value stocks are also more volatile, which,

all else equal, leads investors to charge a higher average return on them. Quantitatively, the

first effect dominates. The model therefore predicts a lower average return on value stocks,

contrary to the empirical facts. One possible explanation for the model’s poor performance

on some anomalies is that investors have incorrect beliefs about the return distributions of

certain types of stocks – for example, they may under-estimate the skewness in value stock

returns. We discuss evidence from option prices that offers some support for this hypothesis.

Our analysis builds on intuitions laid out in earlier papers. The idea that, due to loss

aversion, more volatile assets should, all else equal, have a higher average return, is discussed

by Barberis and Huang (2001) and Li and Yang (2013); the idea that, due to diminishing

sensitivity, an asset’s gain overhang should be positively related to its average return, is

developed by Grinblatt and Han (2005) and Li and Yang (2013); and the idea that, due to

probability weighting, an asset’s return skewness should be negatively related to its average

return, is studied by Barberis and Huang (2008) and Baele et al. (2019), among others.

Despite these advances, the basic questions listed in our opening paragraph remain unan-

swered. To answer these questions – to understand prospect theory’s predictions for the

cross-section of returns – we need to combine the three above intuitions. And to do that,

we need a model that incorporates all the elements of prospect theory and takes account

of investors’ prior gain or loss in each asset. Most of the earlier models incorporate only a

subset of the elements of prospect theory: only loss aversion (Barberis and Huang, 2001),

only loss aversion and diminishing sensitivity (Li and Yang, 2013), or only loss aversion and

probability weighting (Baele et al., 2019). Meanwhile, the prior models of the cross-section

that do incorporate all the elements of prospect theory, those of Barberis and Huang (2008),

Ingersoll (2014), and Barberis, Mukherjee, and Wang (2016), are all one-period models; as

such, they cannot account for investors’ prior gains and losses. A new model is needed, and

we develop one in this paper. The model is not an “easy extension” of prior models, but

rather requires an entirely new equilibrium structure and solution method.

More generally, we advance research on prospect theory applications in finance on three

dimensions: in terms of theory, in terms of empirics, and in terms of scope. First, we present

a new model of the cross-section, one that allows us to answer the questions laid out at the

start of the paper in a way that was not previously possible. Second, to derive quantitative

predictions about average returns, we use empirical measures of return volatility, return

skewness, and gain overhang as inputs to the model. And third, while previous papers on
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prospect theory and market anomalies have each focused on a very small set of anomalies,

we widen the scope of this research by looking at 22 different anomalies. To our knowledge,

our paper marks the first time a “behavioral” model of either beliefs or preferences has been

used to make quantitative predictions about such a wide range of anomalies.

In Section 2, we review prospect theory and narrow framing. In Section 3, we present

a model that incorporates these concepts and discuss the structure of the equilibrium. In

Section 4, we introduce the 22 anomalies that are the focus of our study and compute the

empirical characteristics that serve as inputs to the model. In Section 5, we present the

model’s predictions about stock market anomalies. Section 6 discusses some other aspects of

our analysis, while Section 7 concludes. Additional technical details can be found in Section

8 and in the Internet Appendix.

2 Prospect Theory and Narrow Framing

Our goal is to study asset prices in an economy where investors have prospect theory prefer-

ences and engage in narrow framing. In this section, we review prospect theory and narrow

framing in turn. Readers already familiar with these concepts may prefer to go directly to

Section 3.

2.1 Prospect theory

The original version of prospect theory is described in Kahneman and Tversky (1979). This

version of the theory has some limitations: it can be applied to gambles with at most two

nonzero outcomes, and it predicts that people will sometimes choose dominated gambles.

Tversky and Kahneman (1992) propose a modified version of the theory known as cumulative

prospect theory that overcomes these limitations. This is the version we adopt in this paper.2

To see how cumulative prospect theory works, consider the gamble

(x−m, p−m; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn, pn), (1)

which should be read as “gain or lose x−m with probability p−m, x−m+1 with probability

p−m+1, and so on,” where xi < xj for i < j and where x0 = 0, so that x−m through x−1

are losses and x1 through xn are gains, and where
∑n

i=−m pi = 1. For example, a 50:50 bet

2While our analysis is based on cumulative prospect theory, we often abbreviate this as “prospect theory.”
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to win $110 or lose $100 would be written as (−$100, 1
2
; $110, 1

2
). In the Expected Utility

framework, an individual with utility function U(·) evaluates the gamble in (1) by computing

n∑
i=−m

piU(W + xi), (2)

where W is his current wealth. A cumulative prospect theory individual, by contrast, assigns

the gamble the value
n∑

i=−m

πiv(xi), (3)

where

πi =

⎧⎨⎩ w(pi + . . .+ pn)− w(pi+1 + . . .+ pn)

w(p−m + . . .+ pi)− w(p−m + . . .+ pi−1)
for

0 ≤ i ≤ n

−m ≤ i < 0
, (4)

and where v(·) and w(·) are known as the value function and probability weighting function,

respectively.3 Tversky and Kahneman (1992) propose the functional forms

v(x) =

⎧⎨⎩ xα

−λ(−x)α
for

x ≥ 0

x < 0
(5)

and

w(P ) =
P δ

(P δ + (1− P )δ)1/δ
, (6)

where α, δ ∈ (0, 1) and λ > 1. The left panel in Figure 1 plots the value function in (5) for

α = 0.5 and λ = 2.5. The right panel in the figure plots the weighting function w(P ) in (6)

for δ = 0.4 (the dashed line), for δ = 0.65 (the solid line), and for δ = 1, which corresponds

to no probability weighting (the dotted line). Note that v(0) = 0, w(0) = 0, and w(1) = 1.

There are four differences between (2) and (3). First, the carriers of value in prospect

theory are gains and losses, not final wealth levels: the argument of v(·) in (3) is xi, not

W + xi. Second, while U(·) is typically differentiable everywhere, the value function v(·) is
kinked at the origin, as shown in Figure 1, so that the individual is more sensitive to losses

– even small losses – than to gains of the same magnitude. This element of prospect theory

is known as loss aversion and is designed to capture the widespread aversion to bets such as

(−$100,
1

2
; $110,

1

2
). (7)

The severity of the kink is determined by the parameter λ; a higher value of λ implies a

greater sensitivity to losses.

3When i = n or i = −m, equation (4) reduces to πn = w(pn) and π−m = w(p−m), respectively.
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Third, while U(·) in (2) is typically concave everywhere, v(·) in (3) is concave only over

gains; over losses, it is convex. This pattern, which can be seen in Figure 1, captures the

experimental finding that people tend to be risk averse over moderate-probability gains –

they prefer a certain gain of $500 to ($1000, 0.5) – but risk-seeking over moderate-probability

losses, in that they prefer (−$1000, 0.5) to a certain loss of $500.4 The degree of concavity

over gains and convexity over losses are governed by the parameter α; a lower value of α

means greater concavity over gains and greater convexity over losses.

Finally, under cumulative prospect theory, the individual does not use objective prob-

abilities when evaluating a gamble, but rather, transformed probabilities obtained from

objective probabilities via the weighting function w(·). The main consequence of the proba-

bility weighting in (4) and (6) is that the individual overweights the tails of any distribution

he faces. In equations (3)-(4), the most extreme outcomes, x−m and xn, are assigned the

weights w(p−m) and w(pn), respectively. For the functional form in (6) and for δ ∈ (0, 1),

w(P ) > P for low, positive P ; the right panel of Figure 1 illustrates this for δ = 0.4 and

δ = 0.65. If p−m and pn are small, then, we have w(p−m) > p−m and w(pn) > pn, so that the

most extreme outcomes – the outcomes in the tails – are overweighted.

The overweighting of tails in (4) and (6) is designed to capture the simultaneous demand

many people have for both lotteries and insurance. For example, people typically prefer

($5000, 0.001) to a certain $5, but also prefer a certain loss of $5 to (−$5000, 0.001). By

overweighting the tail probability of 0.001 sufficiently, cumulative prospect theory can cap-

ture both of these choices. The degree to which the individual overweights tails is governed

by the parameter δ; a lower value of δ implies more overweighting of tails.5

2.2 Narrow framing

Traditional models, in which utility functions are defined over wealth or consumption, make

a clear prediction as to how an individual evaluates a new gamble he is offered: he merges the

new gamble with other risks he is already facing to determine its effect on the distribution of

his future wealth or consumption, and then checks if the new distribution is an improvement.

4We abbreviate (x, p; 0, q) as (x, p).
5Prospect theory has impressive predictive power in experimental settings: Fudenberg et al. (2019)

find that, at least for simple gambles, it attains almost the maximum possible level of predictive ability.
One aspect of prospect theory – the “rank-dependent” formulation of probability weighting in (4) – has
not found empirical support (Bernheim and Sprenger, 2019). Fortunately, our results do not rely on rank
dependence: we have repeated our analysis with non-rank-dependent probability weighting and obtain very
similar findings.
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Research on decision-making under risk has uncovered many instances in which people do

not appear to evaluate gambles in this way: instead of merging a new gamble with other risks

they are already facing and checking if the combination is attractive, they often evaluate the

new gamble in isolation, separately from their other risks. This is known as “narrow framing.”

Tversky and Kahneman (1981) present early laboratory evidence of narrow framing. More

recently, Barberis, Huang, and Thaler (2006) argue that the commonly-observed rejection

of the gamble in (7) is evidence not only of loss aversion, but of narrow framing as well.

Prospect theory and narrow framing are both widely seen as describing people’s intuitive

mode of thinking. As such, models with prospect theory investors often also incorporate

narrow framing. We follow this practice here.

3 Model and Equilibrium Structure

In the Introduction, we noted that, in an economy with prospect theory investors who engage

in narrow framing, three asset characteristics are particularly important for the pricing of

an asset: the volatility of the asset’s returns; the skewness of the asset’s returns; and the

average paper gain or loss in investors’ holdings of the asset. We now explain in more detail

why these three characteristics are important.

Prospect theory investors who engage in narrow framing evaluate a risky asset by thinking

about the potential gains and losses in their holdings of the asset, and then computing the

prospect theory value of this distribution of gains and losses. Since they are loss averse, they

dislike assets with volatile returns; all else equal, they require a higher average return on

these assets. Moreover, since, according to probability weighting, they overweight the tails of

the distribution they are thinking about, they like assets with positively-skewed returns; all

else equal, they require a lower average return on such assets. Finally, if an asset is trading

at a gain for the typical investor, this investor finds himself in the concave region to the

right of the kink in the value function in Figure 1. Since he is risk averse at this point, he

demands a high average return to hold the asset. If, on the other hand, the typical investor

has a paper loss in the asset, then he finds himself in the convex region to the left of the

kink, where he is risk-seeking. As a result, he requires a low average return for holding the

asset.

The above intuitions make it clear that, to understand prospect theory’s implications

for asset prices, we need a model that incorporates all the elements of prospect theory and

accounts for investors’ prior gain or loss in each risky asset. As noted above, no existing
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model of asset prices fulfills both conditions. We now present a new model that does.

Solving a model of this kind presents significant challenges; to keep the model tractable, we

necessarily make some simplifying assumptions. Nonetheless, the model captures the three

essential intuitions described above in a robust way.

3.1 Model setup

We consider a model with three dates, t = −1, 0, and 1; our focus is on investor decision-

making at time 0. There is a risk-free asset with gross per-period return Rf . There are

also N risky assets. The gross per-period return of risky asset i is R̃i, and the return vector

R̃ = (R̃1, . . . , R̃N) has a cumulative distribution function P (R̃) that we specify below. The

vector of expected returns on the risky assets is R = (R1, . . . , RN) and the covariance matrix

of returns is Σ = {σij}.

The economy contains a large number of investors who are identical in their preferences;

in their wealth at time −1, W−1; and in their wealth at time 0, W0. The fraction of time 0

wealth that an investor allocates to risky asset i is Θi, so that wealth at time 1 is

W̃1 = W0((1− 1′Θ)Rf +Θ′R̃), (8)

where Θ = (Θ1, . . . ,ΘN). To determine Θ, at date 0, each investor solves:

max
Θ1,...,ΘN

E(W̃1)− γ

2
Var(W̃1) + b0

N∑
i=1

V (G̃i)

= max
Θ1,...,ΘN

W0((1− 1′Θ)Rf +Θ′R)− γ

2
W 2

0Θ
′ΣΘ+ b0

N∑
i=1

V (G̃i), (9)

where

G̃i = W0Θi(R̃i − Rf ) +W−1Θi,−1gi. (10)

The first two terms in (9) are the traditional mean-variance preferences; γ measures

aversion to portfolio risk. The third term in (9) is new, and captures prospect theory

and narrow framing. It is the sum of N components, where the i’th component, V (G̃i),

corresponds to asset i. Specifically, G̃i is the potential gain or loss on asset i, and V (G̃i)

is the cumulative prospect theory value of this gain or loss. The parameter b0 controls the

importance of the prospect theory term relative to the mean-variance terms.

The gain or loss on asset i, G̃i, is defined in (10). It is the sum of two terms. The first
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term, W0Θi(R̃i −Rf ), is the potential future gain or loss on asset i between time 0 and time

1: specifically, it is the value of the investor’s holdings of asset i at time 0 multiplied by the

return on the asset in excess of the risk-free rate. For example, if the investor’s holdings of

asset 1 are worth $100 at time 0, and the net return on asset 1 and on the risk-free asset

between time 0 and time 1 are 20% and 2% respectively, then the realized value of this first

term will be $120 − $102 = $18. We view the risk-free rate as a psychologically plausible

benchmark: the investor may think of the outcome of his investment in asset i as a gain only

if this outcome is better than what he would have earned by investing in the risk-free asset.

Our framework can also accommodate other choices of benchmark.

The second term in (10), W−1Θi,−1gi, is the gain or loss the investor experienced in his

holdings of asset i prior to arriving at time 0. Here, W−1 is the investor’s wealth at time

−1, Θi,−1 is the fraction of wealth allocated to asset i at time −1, and gi is the capital gain

on asset i between time −1 and time 0: if the investor experienced a capital gain of 30% on

asset i between t = −1 and t = 0, then gi = 0.3, while if he experienced a capital loss of

30%, then gi = −0.3.6

Equation (10) indicates that, at time 0, the investor merges the potential future gain or

loss on asset i between time 0 and time 1 with his prior gain or loss on the asset between

time −1 and time 0, and computes the prospect theory value of this overall gain or loss.

This assumption is consistent with mounting evidence that, when an individual has an

ongoing investment in an asset, he integrates the potential future gain or loss in the asset

with his past gain or loss (Thaler and Johnson, 1990; Imas, 2016; Andrikogiannopoulou and

Papakonstantinou, 2019).

To keep the model tractable, we take the second term on the right-hand side of (10) to

be identical across investors. Each investor in the model has the same prior gain or loss gi

in asset i, one that we will empirically estimate as the average gain or loss, since purchase,

across all holders of the asset. In addition, for each investor, we will set Θi,−1 to a neutral

value, namely asset i’s weight in the market portfolio. As such, the W−1Θi,−1gi term can be

thought of as exogenous: Θi,−1 is not a control variable that the investor chooses; the only

control variable is Θi, the investor’s allocation to asset i at time 0, which appears in the first

term in (10). In the Internet Appendix, we study the impact of allowing for heterogeneity

across investors in either their gain or loss gi or their initial allocation Θi,−1; we find that

this impact is quantitatively small. Finally, we use the approximation W−1 ≈ W0.
7

6There are small differences in how the past and the future gains and losses are defined: for simplicity,
the past gain or loss does not account for dividends or correct for the risk-free rate. Adjusting for these has
a very minor impact on our results.

7More accurate approximations, such as W−1 ≈ W0/1.04, where 4% is a measure of the historical average
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By defining utility over asset-level gains and losses, we are incorporating narrow framing.

This framing assumption makes our model more tractable. In addition, as noted above, there

are psychological reasons to couple prospect theory with narrow framing. Consistent with

this, we find that the narrow framing assumption improves the model’s predictive power. In

the Internet Appendix, we describe an analysis we conducted of a model with broad framing,

one where investors derive prospect theory utility from portfolio-level gains and losses. We

find that the model with narrow framing is more successful at explaining the observed facts.

The quantity V (G̃i) is the cumulative prospect theory value of the gain or loss G̃i. For

Θi > 0, we can write V (G̃i) as

−λW α
0

∫ Rf−Θi,−1gi/Θi

−∞
(Θi(Rf − Ri)−Θi,−1gi)

αdw(P (Ri))

−W α
0

∫ ∞

Rf−Θi,−1gi/Θi

(Θi(Ri − Rf) + Θi,−1gi)
αdw(1− P (Ri)), (11)

where P (Ri) is the marginal CDF of asset i’s returns and where dw(P (Ri)) and dw(1−P (Ri))

are given in full in Section 8.1. The expression in (11) uses a standard implementation of

cumulative prospect theory for gambles with continuous distributions. The top row corre-

sponds to losses, and is therefore multiplied by loss aversion λ. The bottom row corresponds

to gains.

To complete the description of the decision problem, we need to specify the probability

distribution P (R̃) for asset returns. Since skewness plays an important role in our analysis,

we need a distribution that can capture it as accurately as possible. One distribution that is

increasingly seen as a superior way of modeling skewness and fat tails in asset returns is the

“generalized hyperbolic (GH) skewed t” distribution, and we adopt it here. The vector of

asset returns R̃ = (R̃1, . . . , R̃N) has an N -dimensional GH skewed t distribution; we present

the density function for this distribution in Internet Appendix A. For our computations,

we need only the marginal distribution of an asset’s return. This is a one-dimensional GH

skewed t distribution; for asset i, its density function is8

p(Ri) =
21−

ν+1
2

Γ(ν
2
)(πνSi)

1
2

.
K ν+1

2
(
√
(ν + (Ri − μi)2/Si)ζ2i /Si) exp((Ri − μi)ζi/Si)(√

(ν + (Ri − μi)2/Si)ζ2i /Si

)− ν+1
2

(1 + (Ri − μi)2ν−1/Si)
ν+1
2

,

for ζ �= 0

return on investor wealth, have a very minor impact on our quantitative predictions. We therefore stick with
the simpler approximation W−1 ≈ W0.

8We use p(·) and P (·) to denote the probability density function and the cumulative distribution function,
respectively.
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p(Ri) =
Γ(ν+1

2
)

Γ(ν
2
)(πνSi)

1
2

.(1 + (Ri − μi)
2ν−1/Si)

− ν+1
2 , for ζ = 0, (12)

where Γ(·) is the Gamma function and Kl is the modified Bessel function of the second kind

with order l.9

The above distribution has four parameters: μi, Si, ζi, and ν. Here, μi, the location

parameter, helps to determine the mean of the distribution; Si, the dispersion parameter,

controls the dispersion in returns; ζi, the asymmetry parameter, governs the skewness of

returns; and ν, a degree of freedom scalar, affects the heaviness of the tails of the distribution.

The mean, variance, and skewness of the distribution are

E(R̃i) = Ri = μi +
ν

ν − 2
ζi (13)

Var(R̃i) =
ν

v − 2
Si +

2ν2

(ν − 2)2(ν − 4)
ζ2i (14)

Skew(R̃i) =
2ζi
√
ν(ν − 4)

√
Si(2νζ2i /Si + (ν − 2)(ν − 4))

3
2

[
3(ν − 2) +

8νζ2i
Si(ν − 6)

]
. (15)

In Sections 4 and 5, using equations (14) and (15), we will set Si, ζi, and ν to match the

empirical volatility and skewness of asset i’s returns. We will then search for a value of μi

so that the market for asset i clears. The asset’s expected return – the quantity we want to

determine – is then given by (13).10

The objective function in (9) combines a traditional component, namely mean-variance

preferences, with a non-traditional one that incorporates prospect theory. As such, it is

consistent with the approach advocated by Koszegi and Rabin (2006) among others, namely

that models of gain-loss utility should retain a traditional utility term. One interpretation

of this two-part utility function draws on the influential “two-system” framework in psychol-

ogy (Kahneman, 2013). Under this view, the prospect theory term in (9) and the narrow

framing it incorporates capture a person’s “fast,” intuitive sense of how to invest, while the

9See Aas and Haff (2006) and Hu and Kercheval (2010) for more discussion of the GH skewed t distri-
bution. This distribution has one “heavy” tail and one “semi-heavy” tail, making it particularly useful for
capturing skewness and fat tails in asset returns. Simpler distributions such as the log-normal and skew-
normal are not suitable for our purposes. The log-normal distribution has two parameters; setting these to
match an asset’s volatility and skewness also fixes the asset’s mean, preventing it from being determined in
equilibrium by market clearing. The skew-normal distribution cannot accommodate skewness levels higher
than 0.995; this makes it a poor fit for our application.

10This procedure is analogous to that for the CAPM. In the case of the CAPM, we estimate a second
moment – an asset’s beta – from the data and use it to determine the asset’s expected return. Here, we will
estimate second and third moments – the asset’s beta, volatility, and skewness – and use them all to predict
the expected return.
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mean-variance term corresponds to an investment strategy based on “slow,” effortful reason-

ing. The individual’s final course of action is a combination of these intuitive and reasoned

judgments: he anchors on his initial intuitive impression, which then leaves an imprint on

his final decision.

Why do we take the traditional term in (9) to be mean-variance preferences, rather than

some other Expected Utility specification? Our main application in this paper is to see if

prospect theory can explain stock market anomalies, in other words, empirical deviations

from the CAPM. As such, we want the traditional part of our preference specification to be

one that delivers CAPM pricing; this will allow us to cleanly identify the deviations from

the CAPM that prospect theory generates. The simplest preferences that lead to the CAPM

are mean-variance preferences.11

3.2 Equilibrium structure

In this section, we discuss the form of the equilibrium in our economy. The equilibrium

structure that is typically used to analyze Expected Utility models does not apply for the

model in (9). This is a roadblock to understanding prospect theory’s implications for the

cross-section, and one of our contributions is to surmount it by way of a new equilibrium

structure. Below, we describe three types of equilibrium and explain why we study the one

that we do.

Full rationality with homogeneous holdings. At time 0, the investors in our econ-

omy are identical in their preferences, their wealth, and their prior gain or loss in each risky

asset. It is therefore natural to think that, in equilibrium, at time 0, they would all choose

the same portfolio holdings {Θi}Ni=1, in other words, that they would each hold the market

supply of each risky asset. Formally, such an equilibrium would consist of a location vector

μ = (μ1, . . . , μN) such that, for this μ, the objective function in (9) has a unique global

maximum Θ∗ = (Θ∗
1, . . . ,Θ

∗
N) with Θ∗

i = ΘM,i for all i, where ΘM,i is the market value of

asset i divided by the total market value of all traded assets. This equilibrium structure is

the one used in Expected Utility models with identical investors.

Remarkably, however, for the wide range of parameter values we have examined, this

type of equilibrium does not exist for the model in Section 3.1. In the Internet Appendix, we

11This explains why we do not include a preference for portfolio skewness in the Expected Utility compo-
nent of the objective function. If we did, it would be unclear whether deviations from the CAPM predicted
by the model are due to the Expected Utility term – specifically, to coskewness – or to the prospect theory
term. Other papers have examined whether coskewness can shed light on stock market anomalies; see Harvey
and Siddique (2000). Here, we examine whether prospect theory can do so.
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illustrate this non-existence with an example. Here, we explain it in general terms. Suppose

that, for some value of μ1, the location parameter for asset 1, the objective function in (9) is

maximized at Θ1 = Θ∗
1, where Θ

∗
1 exceeds the asset’s market supply ΘM,1. This suggests that,

to clear the market, we simply need to lower the value of μ1, as this will lower the asset’s

expected return. However, it turns out that, as we do so, the value of Θ1 for which the

objective function attains its maximum jumps discontinuously from a Θ∗
1 that exceeds ΘM,1

to a Θ∗
1 that lies below it. As such, there is no value of μ1 for which the objective function is

maximized at a Θ∗
1 that equals ΘM,1. An equilibrium where investors have identical holdings

for all assets therefore does not exist.12

Full rationality with heterogeneous holdings. Given that the homogeneous-holdings

equilibrium does not exist, what kind of equilibrium can we consider instead? One alterna-

tive structure involves multiple global maxima. In other words, it may be that there exists

a location vector μ = (μ1, . . . , μN) such that, for this μ, the objective function in (9) has

multiple global maxima, and that by allocating the appropriate number of investors to each

maximum, we can clear the market in each asset.

The difficulty with this equilibrium structure is that it is computationally infeasible to

determine if it exists. To see why, suppose that we consider 100 candidate values for each

element of the location vector μ; this implies 100N possible location vectors μ. Since we are

thinking of the risky assets as individual stocks, N is a large number, on the order of 1000.

For each of the 100N location vectors, we need to solve the N -dimensional optimization

problem in (9) and determine if there are multiple global maxima. We then need to see

whether, by allocating investors to the various maxima, we can clear the market. This

procedure is challenging even for N = 2 risky assets; for N = 1000, the more realistic value

we use below, it is completely infeasible.

Bounded rationality with heterogeneous holdings. To overcome the difficulties

described above, we introduce a mild bounded-rationality assumption, one that makes it

feasible to find a heterogeneous-holdings equilibrium. Specifically, we assume that, when

trying to determine the allocation Θi to asset i that maximizes the objective function in (9),

an investor assumes that his holdings of the other N−1 risky assets equal the market supply

of those assets – in other words, that Θj = ΘM,j for all j �= i. This will not be exactly true

– investors’ actual portfolios will be less diversified than the market portfolio – but, as we

12Why does the value of Θ∗
1 at which (9) is maximized jump discontinuously as we lower μ1? When b0 = 0,

the expression in (9), viewed as a function of Θ1, depends only on Θ1 and Θ2
1. It therefore has a single local

maximum that is also its global maximum. When b0 > 0, (9) becomes a function of Θ1, Θ
2
1, and additional

powers of Θ1, including Θα
1 , where α ∈ (0, 1). As such, it can have multiple local maxima. As we lower μ1,

there comes a point where the global maximum jumps from one local maximum to another; this makes Θ∗
1

a discontinuous function of μ1.
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explain below, this discrepancy is likely to have a negligible impact on our results. We think

of this bounded-rationality assumption not just as a computational technique for solving the

problem in (9), but also as a psychological assumption as to how an individual might in

reality go about solving this problem.

We then define a bounded-rationality equilibrium with heterogeneous holdings as consist-

ing of a location vector μ such that, for this μ, and under the bounded-rationality assumption,

the solution to the problem in (9) involves multiple global maxima, and by allocating each

investor to one of the maxima, we can clear the market. More precisely, for each risky asset

i in turn, we take the objective function in (9), view it as a function of Θi, and then – this

is where the bounded-rationality assumption comes in – set Θj = ΘM,j for all j �= i. Up to

a linear transformation, the resulting function can be written:

Θi(μi +
νζi

ν − 2
− Rf )− γ̂

2
(Θ2

iσ
2
i + 2Θi

∑
j �=i

ΘM,jσij)

−λb̂0

∫ Rf−Θi,−1gi/Θi

−∞
(Θi(Rf − Ri)−Θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−Θi,−1gi/Θi

(Θi(Ri − Rf) + Θi,−1gi)
αdw(1− P (Ri)), (16)

where

γ̂ = γW0 (17)

b̂0 = b0W
α−1
0 . (18)

A bounded-rationality equilibrium with heterogeneous holdings consists of a location vector

(μ1, . . . , μN) such that, for each i, the function in (16) has either a unique global maximum

at Θi = ΘM,i, or has multiple global maxima, one of which lies below ΘM,i and one of which

lies above it, thereby allowing us to clear the market in asset i by allocating some investors

to the lower optimum and others to the upper optimum.

The bounded-rationality assumption greatly simplifies the investors’ optimization prob-

lem: by turning the multivariate function in (9) into the univariate function in (16), it

converts the search for the optimal allocation Θi to asset i into a one-dimensional problem,

one where investors trade off a larger allocation to asset i and lower allocation to the risk-free

asset against the opposite strategy. Moreover, because the problem is now one-dimensional,

it is easy to determine whether the function in (16) has multiple global maxima or a unique

global maximum.

We find that a bounded-rationality equilibrium with heterogeneous holdings exists for a
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wide range of parameter values, and it is the one we focus on. We note two things about

it. First, in this equilibrium, investors need not have heterogeneous holdings for all the

risky assets. When we implement the equilibrium, we find that, for many risky assets,

investors have identical holdings. Second, we find that, for any asset i where investors have

heterogeneous holdings, the function in (16) has just two global maxima, Θ∗
i and Θ∗∗

i , both of

which are positive. These maxima straddle the market supply ΘM,i, so that Θ
∗
i < ΘM,i < Θ∗∗

i ,

and this allows us to clear the market in the asset by assigning some investors to the Θ∗
i

allocation and the rest to the Θ∗∗
i allocation. We also find that Θ∗

i is always much closer to

ΘM,i than is Θ∗∗
i . As such, to clear the market, we assign the vast majority of investors to

the Θ∗
i allocation and the remaining few to the Θ∗∗

i allocation.

In Section 4, after parameterizing the model, we present a numerical example that il-

lustrates investors’ heterogeneous holdings. For now, we emphasize that there is a simple

and realistic intuition for the two optima, Θ∗ and Θ∗∗. The heterogeneous holdings typically

arise for stocks with a positive gain overhang which, in part because of this, have a high

expected return. The lower optimum Θ∗ reflects investors’ desire to lock in their prior gains

in these stocks by selling some of their holdings; the upper optimum Θ∗∗ reflects investors’

desire to benefit from the high expected return by increasing their allocation to these stocks.

In equilibrium, the two strategies are equally attractive.

To understand the portfolios that the investors in our economy hold, suppose that there

are N = 1000 risky assets, and that for 500 of them, all investors have identical holdings – for

these assets, the function in (16) has a unique global maximum – while for the remaining 500,

the function in (16) has two global maxima, so that investors have heterogeneous holdings;

this equal split between assets with homogeneous holdings and assets with heterogeneous

holdings approximates what we find when we implement the equilibrium. All investors then

hold the first 500 assets in proportion to their market weights. For the vast majority of the

remaining 500 assets, the fraction of his portfolio that a given investor allocates to each one

is lower than its market weight – this is the Θ∗
i optimum – but for a small handful of these

assets, he holds a large position, given by the Θ∗∗
i optimum. Overall, then, each investor

combines a diversified portfolio of many assets with a small number of concentrated holdings

– a portfolio structure that mirrors that of many real-world investors.

An investor’s assumption, when solving for his optimal allocation to asset i, that his

holdings of the remaining assets equal their market weights, is not exactly correct: by the

nature of the heterogeneous-holdings equilibrium, he may have an undiversified position in

a small number of these other risky assets. However, this discrepancy is likely to have a

negligible impact on the model’s predictions: we find that, if, when solving for his allocation
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to asset i, the investor instead makes the correct assumption that he has a few undiversified

holdings, the quantitative predictions for expected returns are very similar to those of the

simpler bounded-rationality equilibrium defined through equations (16)-(18).13

To make the model easier to implement, we rescale it. Specifically, let ΘM,R =
∑N

i=1ΘM,i

be the market value of all risky assets relative to the market value of all assets, and define

θi = Θi/ΘM,R

θM,i = ΘM,i/ΘM,R

θi,−1 = Θi,−1/ΘM,R. (19)

From now on, we think of investors as choosing θi rather than Θi. In Section 8.2, we show

that, when reformulated with θi as the choice variable, the investor’s decision problem has

exactly the same form as in (16), subject only to a rescaling of γ̂ and b̂0. The rescaled

problem is simpler to implement because it is easier to compute an empirical counterpart

for θM,i than for ΘM,i and because – see Section 8.2 for details – the rescaling allows us to

simplify the variance term in the first row of (16) by introducing asset i’s beta, denoted βi.
14

For completeness, we restate the definition of equilibrium in terms of θi. The equations

below are simply a rescaled version of (16)-(18). A bounded-rationality equilibrium consists

of a location vector μ = (μ1, . . . , μN) such that, for each i, the function

θi(μi +
νζi

ν − 2
− Rf )− γ̂

2
(θ2i σ

2
i + 2θi(βiσ

2
M − θM,iσ

2
i ))

−λb̂0

∫ Rf−θi,−1gi/θi

−∞
(θi(Rf − Ri)− θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−θi,−1gi/θi
(θi(Ri − Rf) + θi,−1gi)

αdw(1− P (Ri)), (20)

13We have also studied the following iterative procedure. When solving for his allocation Θi to asset i, the
investor starts with an assumption A1 about his remaining holdings – specifically, that they equal market
weights. He then uses the resulting optimal portfolio P1 as a new assumption A2 about the structure of his
portfolio: he again solves for his allocation Θi, this time under assumption A2 about his remaining holdings.
He then takes the new optimal portfolio P2 as a new assumption about his remaining holdings, and so on.
This iterative procedure converges to a “self-consistent” heterogeneous-holdings equilibrium, one where the
assumption the investor makes about his remaining holdings when solving for his allocation to a particular
asset is consistent with the portfolio he actually ends up choosing to hold. The expected asset returns in
this self-consistent equilibrium are quantitatively very similar to those in the simpler bounded-rationality
equilibrium in equations (16)-(18).

14Since ΘM,R =
∑N

i=1 ΘM,i, it follows that
∑N

i=1 θM,i = 1. However, due to investors’ heterogeneous

holdings,
∑N

i=1 θi will almost never equal 1 for any given investor.
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where

γ̂ = γW0ΘM,R (21)

b̂0 = b0W
α−1
0 Θα−1

M,R, (22)

has either a unique global maximum at θi = θM,i or multiple global maxima that straddle

θM,i.

In Section 8.3, we explain in full the procedure we use to determine whether investors

have identical or heterogeneous holdings in an asset, and to then compute the asset’s ex-

pected return. Since it involves numerical integration, this calculation takes a few minutes

of computing time; this is fast enough for the application we consider in this paper.

4 Anomalies and Model Parameter Values

The model of Section 3 generates quantitative predictions about the cross-section of average

returns when investors evaluate risk according to prospect theory. We now use the model to

answer a basic but long-standing question: Can prospect theory shed light on stock market

anomalies? To be as comprehensive as possible, subject to the computational constraints we

face, we consider 22 anomalies. They are listed in Table 1, along with the abbreviations we

use in subsequent tables to refer to them; Internet Appendix B reports the predictor variable

associated with each anomaly. The 22 anomalies are intended to include those that, to date,

have received the most attention from researchers. To construct the set of anomalies, we

start with the 11 anomalies studied by Stambaugh, Yu, and Yuan (2012) and then add 11

more by choosing, from among the 97 anomalies studied by McLean and Pontiff (2016),

those that appear to us to have received the most attention. The list is not based on any

prior beliefs about whether prospect theory is helpful for explaining an anomaly – again, it

is intended to be nothing more than a representative set of well-known anomalies.

To see if our model can explain a particular anomaly, we proceed as follows. We consider

an economy with N = 1000 stocks; each anomaly decile therefore contains 100 stocks. We

number the stocks so that, in the case of the value anomaly, say, stocks 1 to 100 belong to

decile 1, which contains stocks with low book-to-market ratios; stocks 101 to 200 belong to

decile 2; and so on. All stocks in a given decile are identical: they have the same charac-

teristics, namely, the empirical characteristics of the typical stock in that anomaly decile.

For each decile in turn, we choose one stock at random and compute our model’s prediction

for its expected return. Since all stocks in a given decile are identical, this immediately
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tells us the expected return of all the stocks in that decile. Our model can help explain the

value anomaly if the expected return it predicts for the randomly-chosen stock in decile 10

is significantly higher than the expected return it predicts for the randomly-chosen stock in

decile 1.15

What are the empirical inputs we need to compute the expected return of a stock in our

model? Equation (20) shows that, to determine μi, and hence stock i’s expected return, we

need to know σi, ζi, gi, and βi. In words, to compute our model’s prediction for the expected

return of a stock in some anomaly decile, we need to know, for the typical stock in that

decile, its return volatility, its return skewness, its gain overhang, and its beta. We estimate

these inputs from historical data. To explain how we do so, we focus on the example of the

value anomaly; the process is the same for all the anomalies we consider.

Each month from July 1963 to December 2014, we rank all stocks listed on the NYSE,

Amex, or Nasdaq on their book-to-market ratio and then group them into deciles. (For

each of the other anomalies, we instead rank stocks on the relevant anomaly characteristic –

for example, on their idiosyncratic volatility in the case of the volatility anomaly.) Decile 1

corresponds to stocks with the lowest book-to-market ratios, and decile 10 to stocks with the

highest book-to-market ratios. Suppose that, in some particular month, each decile contains

100 stocks. Take decile 4, say. To compute the beta of the typical stock in decile 4 in this

month, we calculate the betas of each of the 100 stocks in the decile and average them.16

To compute the capital gain overhang of the typical stock in decile 4, we calculate the gain

overhang for each stock in the decile – the percentage gain or loss since purchase for the

average investor in the stock – and average these 100 numbers. To compute the volatility

and skewness of the typical stock in decile 4 over the next year, we record the returns, over

the next year, of the 100 stocks in the decile and compute the cross-sectional volatility and

skewness of these 100 returns. We conduct this exercise for each decile in this month. At the

end of this process, we have four quantities in hand for each anomaly decile in this month:

the volatility, skewness, gain overhang, and beta for the typical stock in that decile.

We repeat the above exercise for each month in our sample. This gives us, for each

book-to-market decile, a time series for each of the four quantities: return volatility, return

skewness, gain overhang, and beta. In the final step, we compute the mean of each time

15Why do we not simply consider an economy with N = 10 risky assets, where each asset represents the
typical stock in one of the anomaly deciles? The reason is that the expected return our model predicts for an
asset depends on the asset’s weight in the market portfolio. We therefore need to capture the fact that, in
reality, any given stock makes up only a small fraction of the overall market. Setting N = 1000 allows us to
do this. Since all 100 stocks in each decile are identical, the computational burden in the case of N = 1000
is the same as for N = 10.

16For a given stock in a given month, we compute its beta using daily returns over the following year.
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series. For each book-to-market decile, this leaves us with four numbers pertaining to the

typical stock in that decile: the standard deviation of its returns; its return skewness; its gain

overhang; and its beta. We feed these four numbers into our model to see what it predicts

for the expected return of the typical stock in that anomaly decile.17

In the calculations described above, we compute the volatility and skewness of annual

stock returns. Why is this? In our model, we focus on decision-making at time 0, which

lies somewhere between time −1, when an investor purchases a stock, and time 1, when

he disposes of it. Over our sample period, stock market turnover is approximately 50% per

year, which implies that an individual stock is held for about two years, on average (Chordia,

Subrahmanyam, and Anshuman, 2001). If the interval between time −1 and time 1 is two

years, it is natural to take the interval between time 0 and time 1 to be one half of this,

namely one year.

As noted above, we compute the volatility and skewness of the typical stock in an anomaly

decile as the cross-sectional volatility and skewness of the subsequent returns of the 100 stocks

in the decile. This approach has a number of advantages. By measuring the likely volatility

and skewness of a stock going forward, rather than the stock’s past volatility and skewness,

it focuses on what a rational, forward-looking investor is interested in. It also captures a

natural way in which real-world investors may judge the future volatility or skewness of a

stock: when trying to estimate a stock’s skewness, say, they may take a set of stocks with

similar characteristics and then check how often stocks in this set post an extreme right-tail

return. The cross-sectional volatility and skewness are fairly stable from month to month,

which means that investors can learn them from even a short sample of data. One limitation

of this approach is that, due to common factors in the returns of stocks in the same decile, it

may understate the volatility and skewness of these returns. However, if this bias is similar

across deciles, its impact on the alphas we compute later will be minor.18

Before presenting the empirical characteristics of the 220 anomaly deciles, we clarify

the definition of one key variable: the capital gain overhang. There are two approaches to

17For four of the anomalies – O-Score, post-earnings announcement drift, failure probability, and difference
of opinion – data availability requires us to begin the computation after July 1963: in January 1972, December
1973, December 1974, and January 1980, respectively. For the size anomaly, we follow standard practice in
using NYSE rather than CRSP breakpoints. For this one anomaly, then, decile 1 contains many more stocks
than decile 10.

18We have also considered an alternative forward-looking approach. For each of the 100 stocks in a given
anomaly decile in a given month, we compute the volatility and skewness of the stock’s daily returns over
the next year and then average these quantities across the 100 stocks. We can then use the volatility and
skewness of daily returns to make inferences about the volatility and skewness of annual returns. However,
this last step is challenging, particularly in the case of skewness, in that it relies on additional assumptions
about the autocorrelations of stock returns. Weighing the advantages and disadvantages of the time-series
and cross-sectional approaches, we view the latter as superior.
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computing this quantity, one due to Grinblatt and Han (2005) and the other to Frazzini

(2006). Grinblatt and Han (2005) use a stock’s past trading volume to estimate how long

each of the investors in the stock has been holding it; this then allows them to calculate the

average investor’s capital gain or loss in the stock. Frazzini (2006) uses data on mutual fund

holdings to compute the average gain or loss in a stock across the mutual fund investors in

that stock. We computed both measures of gain overhang, and find that they lead to similar

quantitative estimates and similar model predictions. We therefore pick one – the Grinblatt

and Han (2005) measure, because it is easier to compute and accounts for both individual

and institutional investors – and stick with it throughout.19

Table 2 presents the results of the above empirical exercise. The first column of the

table lists the 22 anomalies we are interested in. The second and third columns report, for

each anomaly, the value-weighted return of decile 1 stocks and decile 10 stocks, respectively;

these are computed month by month, averaged across the 618 months of our sample, and

annualized. By definition of what an anomaly is, these average returns differ in a way

that is not explained by beta. The fourth and fifth columns of the table report the standard

deviation of the annual return of the typical stock in deciles 1 and 10, respectively, computed

as described above. The sixth and seventh columns list the skewness of the annual return

of the typical stock in deciles 1 and 10, respectively. Finally, the eighth and ninth columns

report the capital gain overhang of the typical stock in deciles 1 and 10, respectively.

We make two observations about the results in Table 2. First, for most of the anomalies,

the typical stock in decile 1 differs substantially from the typical stock in decile 10 in its return

volatility, return skewness, and gain overhang – in other words, in the three characteristics

that, aside from beta, determine expected returns in our model. Consider, for example, the

size anomaly: the typical stock in decile 1 has an annual standard deviation of 76%, while the

typical stock in decile 10 has an annual standard deviation of just 25%. Similarly, while the

typical small-cap stock has an annual return skewness of 4.3, the typical large-cap stock has

an annual return skewness of just 0.7. And while the typical small-cap stock has a negative

gain overhang of −15%, the typical large-cap stock has a positive gain overhang of 17%.

The second, more striking, observation is that the three characteristics – standard devi-

ation, skewness, and gain overhang – are strongly correlated across anomaly deciles: for 21

of the 22 anomalies, if the typical stock in decile 1 has a higher return skewness than the

typical stock in decile 10, then it also has a higher standard deviation, and vice-versa; the

only exception is for post-earnings announcement drift (PEAD). Furthermore, for 21 of the

19Grinblatt and Han (2005) compute the gain overhang as (P −R)/P , where P is a stock’s current price
and R is the average purchase price. We compute it slightly differently, as (P − R)/R. This measure is a
more precise match for the capital gain variable g in our model.
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22 anomalies – the only exception is the net operating assets (NOA) anomaly – if the typical

stock in decile 1 has a higher return skewness than the typical stock in decile 10, then it also

has a more negative gain overhang, and vice-versa.

Figure 2 illustrates these relationships. Consider the top-left graph in the figure. Each

asterisk in the graph corresponds to an anomaly decile; since there are 22 anomalies, this

makes for a total of 220 asterisks. The horizontal and vertical axes in the graph measure

the standard deviation and skewness, respectively, of the typical stock in an anomaly decile.

The graph shows the positive correlation between these two quantities. In a similar way, the

other two graphs show the negative correlation, across anomaly deciles, between standard

deviation and gain overhang, and between skewness and gain overhang.20

The empirical relationships in Figure 2 point to the necessity of our quantitative approach.

Suppose that, for one of the extreme decile portfolios – decile 1, say – the typical stock in

that decile has a higher return skewness, higher return volatility, and lower gain overhang

than the typical stock in the other extreme decile, decile 10; of the 22 anomalies, 20 follow

this pattern. It is then impossible to tell, without a quantitative model, whether prospect

theory can explain the anomaly. The reason is that there are counteracting forces. Decile 1

stocks have more volatile returns than decile 10 stocks. Since prospect theory investors are

loss averse, this will lead them, all else equal, to require a higher average return on decile

1 stocks than on decile 10 stocks. However, decile 1 stocks also have more skewed returns

than decile 10 stocks. Since prospect theory investors exhibit probability weighting, this

will lead them, all else equal, to charge a lower average return on decile 1 stocks. Finally,

decile 1 stocks trade at a loss, while decile 10 stocks trade at a gain. Due to diminishing

sensitivity, this will lead prospect theory investors, all else equal, to require a lower average

return on decile 1 stocks. Since two of these forces go in one direction and the other goes in

the opposite direction, we need a quantitative model to determine whether prospect theory

can explain the anomaly.

The empirical results in Table 2 and Figure 2 are incorporated into the model through

the values we assign the model parameters. We now explain how we set these parameter

values.

20The correlations between volatility, skewness, and gain overhang shown in Figure 2 also hold at the
individual stock level; see Table 1 in An et al. (2020). However, the relationships are significantly stronger
at the anomaly decile level – and it is these decile-level relationships that matter when predicting decile-level
average returns.
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4.1 Parameter values

To see if our model can capture a particular anomaly, we proceed as follows. We consider

an economy with N = 1000 stocks, and assign 100 of these stocks to each anomaly decile:

stocks 1 to 100 belong to anomaly decile 1, stocks 101 to 200 to anomaly decile 2, and so

on. For any given decile, we take all the stocks in the decile to be identical: they have the

same standard deviation, skewness, gain overhang, and beta, namely the empirical standard

deviation, skewness, gain overhang, and beta of the typical stock in that anomaly decile,

computed as described above. We set the parameters Si and ζi of the skewed t distribution,

the capital gain gi, and the beta βi to capture these empirical values. We then search for a

location parameter μi so that the conditions for equilibrium described in Section 3.2 around

equation (20) are satisfied. Our model’s prediction for a stock’s expected return is then given

by (13). Note that all stocks in a given decile will have the same μi and hence the same

expected return.

We now explain in more detail how we parameterize the model. While the model features

several parameters, all of them are disciplined by either field data or experimental data. The

asset-level parameters are Rf , the gross risk-free rate; N , the number of stocks; {Si}, the
dispersion parameters for stock returns; {ζi}, the asymmetry parameters for stock returns;

ν, the degree of freedom parameter; {βi}, the stocks’ betas; {gi}, the stocks’ capital gains;

σM , the standard deviation of stock market returns; and {θM,i}, the market weights for the

N stocks. The investor-level parameters are γ̂, portfolio risk aversion; b̂0, the importance

of the prospect theory term in investor preferences; (α, δ, λ), the prospect theory preference

parameters; and {θi,−1}, investors’ prior allocations to the N stocks.21

We start with the asset-level parameters. We set ν = 7.5, which represents a reasonable

degree of fat-tailedness in stock returns; our results are not very sensitive to the value of ν.

We then set the dispersion parameters {Si} and the asymmetry parameters {ζi}. To do this,

recall from equations (14) and (15) that, for the GH skewed t distribution,

Std(R̃i) =

[
ν

v − 2
Si +

2ν2

(ν − 2)2(ν − 4)
ζ2i

]0.5
(23)

21An alternative to calibrating the model is to estimate it – specifically, to estimate the values of α, δ,
λ, b̂0, and γ̂. However, without the use of approximations, estimation is not feasible: it requires generating
expected returns for the 220 anomaly deciles for thousands of different sets of parameter values; because of
the numerical integration involved, generating the 220 expected returns even for one set of parameter values
takes a substantial amount of time. One appealing feature of our calibration approach is that it allows us
to see how well the model performs when parameterized using data that are independent of the anomalies it
is trying to explain.
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Skew(R̃i) =
2ζi
√
ν(ν − 4)

√
Si(2νζ2i /Si + (ν − 2)(ν − 4))

3
2

[
3(ν − 2) +

8νζ2i
Si(ν − 6)

]
. (24)

To set Si and ζi for a stock i that belongs to a particular anomaly decile, we take the

empirical standard deviation and skewness of the typical stock in that anomaly decile, and

plug them into the left-hand side of equations (23) and (24). These equations then allow

us to solve for the two unknowns, Si and ζi. For example, in the case of the size anomaly,

stocks 1 to 100 belong to the lowest market capitalization decile. From Table 2, we see

that the empirical standard deviation and skewness for the typical stock in this decile are

0.76 and 4.27, respectively. Accordingly, for this anomaly, to set the values of Si and ζi for

i ∈ {1, . . . , 100}, we solve

0.76 =

(
7.5

7.5− 2
Si +

2(7.5)2

(7.5− 2)2(7.5− 4)
ζ2i

)0.5

(25)

4.27 =
2ζi
√
7.5(7.5− 4)

√
Si(2(7.5)ζ

2
i /Si + (7.5− 2)(7.5− 4))

3
2

[
3(7.5− 2) +

8(7.5)ζ2i
Si(7.5− 6)

]
. (26)

For a given stock i that belongs to some anomaly decile, we set its beta equal to the empirical

beta of the typical stock in that decile.

In terms of asset-level parameters, this leaves {gi}, the stocks’ capital gains; σM , the

standard deviation of annual stock market returns; {θM,i}, the stocks’ market weights; and

the gross risk-free rate Rf . For a stock i in some anomaly decile, we set gi to the empirical

gain overhang of the typical stock in that anomaly decile, computed as described earlier in

this section and displayed in Table 2 for the two extreme deciles of each anomaly. We set

σM to 0.25 and the gross risk-free rate Rf to 1.

We set {θM,i}, the stocks’ market weights, to match empirical market weights. Take, for

example, the volatility anomaly. In each month of our sample, we compute the fraction of

the total market value of all stocks in our sample in that month that is made up by the

stocks in each volatility anomaly decile. We then compute the time-series averages of these

fractions. We find that, on average, volatility decile 1 makes up 29.6% of total stock market

value. Since, in our model, there are 100 identical stocks in decile 1, we set θM,i = 0.296/100

for all stocks in decile 1, in other words, for i = 1, . . . , 100. We proceed similarly for the

other deciles.

We now turn to the investor-level parameters. We set γ̂, the scaled portfolio risk aversion

in (21), and b̂0, the scaled weight on the prospect theory term in (22), to generate an aggregate

equity premium of 6%. There are many pairs (γ̂, b̂0) that produce an equity premium of 6%.
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How do we choose one? As we increase b0, we increase not only the equity premium, but also

the size of the predicted deviations from the CAPM, as well as investors’ degree of under-

diversification. To put an approximate upper bound on the level of mispricing that prospect

theory investors can generate, we choose, from among the (γ̂, b̂0) pairs that generate a 6%

equity premium, the one with the highest level of b̂0 that still produces plausible levels of

under-diversification. This is the pair (γ̂, b̂0) = (0.6, 0.6).22 We set θi,−1, investors’ allocation

to stock i at time −1, to a neutral value, namely θM,i, the weight of stock i in the market

portfolio of risky assets, which, as noted above, is based on empirical values. As noted

earlier and discussed further in the Internet Appendix, our results are not very sensitive to

this initial allocation.

Finally, we set the preference parameters α, δ, and λ. A well-known set of values

for these parameters comes from Tversky and Kahneman (1992), who estimate (α, δ, λ) =

(0.88, 0.65, 2.25) for the median participant in their experiment. However, these estimates

are almost 30 years old and are based on a small number of participants. Given that the

values we assign to these parameters play a significant role in our results, it seems prudent

to base these values on a wide range of studies, not just one.

Tversky and Kahneman’s (1992) results have led to the widespread view that the degree of

loss aversion λ is approximately 2. However, recent studies suggest that the true level of loss

aversion in the population is significantly lower. In a meta-analysis of experimental estimates

of loss aversion, Walasek, Mullett, and Stewart (2018) find that the median estimate of λ is

just 1.31. Chapman et al. (2018) argue that even this estimate may be too high. Based on

a large group of people who are more representative of the population than the participants

in the typical experimental study, they obtain estimates of λ that are lower still – as low

as λ = 0.98 for their median participant, albeit somewhat higher for those with greater

cognitive ability. To reflect these findings, in a conservative way, we set λ = 1.5.

Booij, van Praag, and van de Kuilen (2010) compile a list of experimental estimates of

α and δ. The median estimate of δ is close to Tversky and Kahneman’s (1992) estimate;

we therefore maintain δ = 0.65. Experimental estimates of α span a fairly wide range; most

lie between 0.5 and 0.95. We set α near the midpoint of this range, at 0.7. Our preference

22For these parameter values, the upper optimum θ∗∗ for the anomaly deciles with heterogeneous holdings
is almost always much below 0.2. If we take ΘM,R = 0.5, this implies that, for any stock in which an investor
has an undiversified position, the stock constitutes significantly less than 10% = 0.5(0.2) of his financial
wealth.
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parameter values are therefore23

(α, δ, λ) = (0.7, 0.65, 1.5). (27)

By setting the stock-level parameters – specifically, Si, ζi, and gi – in the way described

above, we are assuming that investors have sensible beliefs: they are aware of the return

volatility and return skewness of the typical stock in each anomaly decile, and of its gain

overhang. This is a natural case to study. However, it is possible that, for certain types of

stocks – for value stocks, say, or for small-cap stocks – investors do not have accurate beliefs.

We discuss this possibility in Section 6.1.

Now that we have parameterized the model, we can illustrate the equilibrium structure

using the momentum anomaly as an example. For stocks in momentum decile 1, namely

stocks 1 to 100, investors have identical holdings, each holding the market supply of each

stock, θM,i. For example, for stock 1, there is a value of μ1, the location parameter for stock

1, such that the function in (20), for i = 1, has a unique global maximum at θ1 = θM,1 =

1.85 × 10−4. Figure 3 plots the function in (20) for this value of μ1, namely μ1 = 0.0124.

The global maximum at θ∗1 = θM,1 is clearly visible.

For the stocks in momentum decile 10, namely stocks 901 to 1000, investors have hetero-

geneous holdings. For example, for stock 901, there is a value of μ901 such that the function

in (20), for i = 901, has two global maxima that straddle the market supply. The solid line

in Figure 4 plots the function in (20) for this value of μ901, namely μ901 = 0.5678. It shows

the two global maxima, one at θ∗901 = 9.5× 10−5 < θM,901 and one at θ∗∗901 = 0.119 > θM,901.

Since these optima straddle the market supply, we can clear the market by allocating most

investors to the first optimum and the rest to the other optimum.

As noted earlier, there is a simple and realistic intuition for the two global maxima in

Figure 4. The heterogeneous holdings typically arise for stocks that are trading at a gain and

that, in part because of this, have a high expected return. The lower optimum θ∗ reflects

investors’ desire to lock in their prior gains in these stocks by selling some of their holdings;

the upper optimum θ∗∗ reflects investors’ desire to benefit from the high expected return

by increasing their allocation to these stocks. In equilibrium, the two strategies are equally

23The values of α, δ, and λ in (27) are also in line with prior research on financial applications of prospect
theory. Barberis and Xiong (2009) find that prospect theory is more consistent with investor trading behavior
for values of α and λ that are lower than those estimated by Tversky and Kahneman (1992). Meanwhile,
even the lower level of loss aversion in (27) is strong enough to generate a high equity premium and non-
participation in the stock market – two prominent applications of loss aversion in finance.
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attractive.24

In Internet Appendix C, we give more details about the shape of the solid lines in Figures

3 and 4. With reference to the dashed and dash-dot lines in Figure 4, we also explain why,

for the stocks in momentum decile 10, there is no equilibrium with identical holdings.

5 Application

We now use our model to answer a long-standing question: Can the risk attitudes captured

by prospect theory shed light on the prominent anomalies in Table 1?

To determine whether our model can help explain an anomaly, we focus on anomaly

alphas. For any given anomaly, we compute the empirical alphas for the ten anomaly

deciles over our 1963-2015 sample – these are value-weighted CAPM alphas computed from

a monthly regression and annualized – and denote them as αd(1), . . . , αd(10), where the “d”

superscript stands for “data.” We then compute the alphas predicted by our model for each

of the ten deciles, namely αm(1), . . . , αm(10), where “m” stands for “model.” Since, within

each decile, all stocks are identical and hence have the same expected return and alpha, we

can compute the alpha of decile l as the alpha of any stock in that decile – for example, as

the alpha of stock 100l:

αm(l) = R100l − (Rf + β100l(RM − Rf )),

where RM =
∑N

i=1 θM,iRi.

We say that our model can help explain an anomaly if

sign(αd(10)− αd(1)) = sign(αm(10)− αm(1)) and |αm(10)− αm(1)| > 0.015. (28)

The first condition in (28) is that the model correctly predicts the sign of the difference

between αd(10) and αd(1), in other words, predicts that α(10) > α(1) if this is empirically

the case and that α(10) < α(1) if that is empirically the case. The second condition in

(28) is that the model makes a “strong” prediction, in other words, predicts a substantial

difference between the two alphas; while the 1.5% cutoff is somewhat arbitrary, it allows for

a simple way of organizing our results. Similarly, we say that the model fails to explain an

24Heterogeneous holdings due to non-unique optima of the objective function also arise in other settings;
see Brunnermeier, Gollier, and Parker (2007) and Barberis and Huang (2008). However, the forces driving
the non-unique optima are different in each case.
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anomaly if

sign(αd(10)− αd(1)) = −sign(αm(10)− αm(1)) and |αm(10)− αm(1)| > 0.015, (29)

in other words, if the model makes a strong prediction but this prediction is incorrect, for

example predicting that α(10) > α(1) when the opposite is true in the data. Finally, we say

that the model does not make a strong prediction about an anomaly if

|αm(10)− αm(1)| < 0.015. (30)

We find that our model is helpful for thinking about a strikingly large number – a

majority, in fact – of the anomalies we consider; we review these anomalies in Section 5.1.

In Section 5.2, we discuss the anomalies where our model performs poorly. And in Section

5.3, we note the anomalies where our model does not make a strong prediction. Finally, in

Section 5.4, we compare our model’s performance to that of some widely-used factor models.

5.1 Anomalies where prospect theory performs well

Our model is helpful for thinking about 13 of the 22 anomalies: for these 13 anomalies, the

conditions in (28) are satisfied. Specifically, these are the momentum, failure probability,

idiosyncratic volatility, gross profitability, idiosyncratic skewness, return on assets, maximum

daily return, O-Score, external finance, composite equity issuance, net stock issuance, post-

earnings announcement drift, and difference of opinion anomalies. We present our model’s

predictions about these anomalies in Figures 5-8.

The top-left graph in Figure 5 shows the results for the momentum anomaly. The hor-

izontal axis corresponds to the ten decile portfolios, 1 through 10, while the vertical axis

measures their alphas. The graph has two lines in it. The dashed line plots the empirical

alpha of each decile; the fact that it is upward sloping indicates that, historically, and con-

trolling for beta, stocks with high medium-term past returns earned a higher average return

than stocks with low medium-term past returns. The solid line plots the alphas predicted

by our model for the ten anomaly deciles.

Figures 5-8 also present results for 12 other anomalies that our model can help explain.

The graphs all have the same structure: the dashed lines plot the empirical alphas, while the

solid lines plot the model-predicted alphas. For all 13 anomalies in these graphs, our model

predicts a lower alpha for the extreme decile that, empirically, has a lower alpha. Moreover,
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for most of these 13 anomalies, our model is able to explain a large fraction of the spread

in empirical alphas. The intuition for why our model helps to explain these anomalies is

the following. For these anomalies, the extreme decile with the lower empirical alpha – for

example, decile 1 in the case of the momentum anomaly and decile 10 in the case of the

volatility anomaly – contains stocks with more volatile returns, more skewed returns, and a

more negative capital gain overhang. On the one hand, the higher volatility of these stocks

leads the investors in our economy to charge a higher average return on them. On the other

hand, the stocks’ higher skewness and more negative gain overhang leads investors to charge

a lower average return on them. The latter force dominates, so that the model predicts a

low average return on these stocks, consistent with the data.

Figures 5-8 show that our model can explain not only the alphas for the extreme deciles,

but also those for the intermediate deciles. In particular, for several of the anomalies, the

dashed lines, which plot the empirical alphas, are concave: the alphas are similar for most

deciles, but fall rapidly as we approach the extreme decile with the most skewed stocks. This

pattern is particularly stark for the volatility and failure probability anomalies in Figure 5,

but is present for a number of other anomalies as well. The solid lines in the graphs show,

strikingly, that our model captures this concavity.

Prior studies have linked the diminishing-sensitivity component of prospect theory to

some of the anomalies we consider – specifically, to momentum and post-earnings announce-

ment drift (Grinblatt and Han, 2005; Frazzini, 2006; Li and Yan, 2013). In the case of

momentum, the idea is that stocks in momentum decile 10 have capital gains which bring

investors into the concave, risk averse region of the value function, leading them to charge

a higher average return on these stocks. Our analysis confirms that this mechanism helps

to explain these anomalies, but also shows that the argument is incomplete in important

ways. It is not just that stocks in momentum decile 10 trade at a gain; their returns are

also less volatile and less skewed than the returns of stocks in momentum decile 1 – charac-

teristics that, due to loss aversion and probability weighting, also affect the average return

that prospect theory predicts for momentum deciles. Our analysis shows that, once we take

all three characteristics – volatility, skewness, and gain overhang – into account, prospect

theory can indeed explain the momentum anomaly, but it is only through a quantitative

framework like the one we develop in this paper that this conclusion can be drawn.

Similarly, prior work has linked the probability-weighting component of prospect theory

to some of the anomalies we consider – specifically, to the idiosyncratic volatility, idiosyn-

cratic skewness, and failure probability anomalies (Campbell, Hilscher, and Szilagyi, 2008;

Boyer, Mitton, and Vorkink, 2010; Conrad, Kapadia, and Xing, 2014). The idea is that, for
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these anomalies, stocks in decile 10 have positively-skewed returns, which, due to probability

weighting, leads investors to charge a lower average return on them. Our analysis confirms

this mechanism, but also indicates that the argument is incomplete. Highly-skewed stocks

also tend to have more volatile returns and to trade at a loss – characteristics that, in a

prospect theory framework, also affect their average returns. We show that, when all three

characteristics are taken into account, prospect theory can explain the above anomalies –

but, again, it is only through our quantitative approach that this can be confirmed.25

Wang, Yan, and Yu (2017) propose and document empirically that, in a prospect theory

framework, greater volatility can lead to lower average returns for assets trading at a loss

because investors are in the convex region of the value function. This effect turns out not

to play a major role in our results. The reason is that, as shown in the top-right graph of

Figure 2, for each of the 220 stocks we are pricing, the stock’s return volatility exceeds the

absolute value of its gain overhang. As such, the investors in these stocks are still quite close

to the kink in the value function, and they price the stocks accordingly: greater volatility

interacts with the kink to generate a higher average return.26

Figures 5-8 also draw a connection between prospect theory and a number of anomalies

that, to our knowledge, has not previously been noted. For example, they show that prospect

theory is helpful for thinking about the gross profitability, return on assets, external finance,

composite equity issuance, net stock issuance, and difference of opinion anomalies – again,

anomalies that prospect theory has not previously been linked to.

5.2 Anomalies where prospect theory performs poorly

For seven of the 22 anomalies, the model performs poorly, in that, as laid out in the conditions

in (29), it predicts a substantial difference between the alphas for deciles 1 and 10, but of the

wrong sign. These are the size, value, long-term reversal, short-term reversal, accrual, asset

growth, and investment anomalies. We discuss two of these – the size and value anomalies

– in more detail, and the others more briefly.

The top-left graph in Figure 9 presents the results for the size anomaly. As in the earlier

graphs, the dashed line plots the empirical alphas, while the solid line plots the alphas

25We find that all three characteristics – volatility, skewness, and gain overhang – play a significant role
in determining the average return; it is not that one of them plays an outsize role.

26Similarly, An et al. (2020) propose and document empirically that, in a prospect theory framework,
greater skewness lowers an asset’s average return primarily for assets trading at a loss. This effect is also
not playing a major role in our results: we find that, for the 220 stocks we are pricing, a marginal increase
in skewness leads to a lower average return regardless of whether the stock is trading at a gain or at a loss.

30



predicted by the model. The graph shows that the model has mixed success in explaining

this anomaly. On the one hand, the model captures the small decline in the empirical alphas

as we move from decile 2 to decile 10. On the other hand, it fails to explain the positive

historical alpha for decile 1, which contains the stocks with the lowest market capitalizations.

These stocks are very volatile, which, all else equal, leads investors to charge a high average

return on them. However, they also have positively-skewed returns and trade at a loss, which

leads investors to charge a low average return on them. Our analysis shows that this second

effect overwhelms the first one.

The top-right graph in Figure 9 presents the results for the value anomaly. The model

fails to explain this anomaly. The reason is that value stocks have more positively-skewed

returns than growth stocks, and trade at a larger loss; this leads investors to charge a lower

average return on value stocks. It is true that value stocks are also more volatile than growth

stocks, which, all else equal, leads investors to charge a higher average return on value stocks.

However, the figure shows that the second effect is overwhelmed by the first one.

Figures 9-10 present results for five other anomalies that our model performs poorly on –

the long-term reversal, short-term reversal, accrual, asset growth, and investment anomalies.

In Section 6, we discuss some possible reasons why the model performs poorly for these

anomalies.

5.3 Anomalies where prospect theory does not make a strong pre-

diction

For two other anomalies, the net operating assets and organizational capital anomalies,

prospect theory does not make a strong prediction, in that, as specified in (30), it pre-

dicts alphas for the two extreme decile portfolios that differ by less than 1.5% in absolute

magnitude. Figure 11 presents the results for these anomalies.

5.4 Model performance

The results presented so far show that our model is helpful for thinking about a majority of

the 22 anomalies. We now examine how the model performs relative to other pricing models

– in particular, relative to the CAPM; the Fama-French three-factor model; the Carhart

four-factor model; the more recently-proposed Fama-French five-factor model; and a six-

factor model that augments the five-factor model with a momentum factor. Specifically, we
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compute the models’ average absolute pricing errors for the 22 long-short portfolios that, for

each anomaly, go long the stocks in anomaly decile 1 and short the stocks in anomaly decile

10. For example, for the prospect theory model, the pricing error for a given long-short

anomaly portfolio is

[R
d
(1)−R

d
(10)]− [R

m
(1)−R

m
(10)],

where R(l) is the average return of the stocks in anomaly decile l, and where d and m refer

to the data and the model, respectively. The pricing error for the three-factor model, say, is

computed in the usual way as the intercept in a regression of the long-short portfolio return

on the three Fama-French factors.

Table 3 reports the average absolute monthly pricing error across the 22 anomalies for

the prospect theory model and for the five factor models. The table shows that our model

performs better than the CAPM and three-factor model, similarly to the four-factor model,

and less well than the five- and six-factor models.

It is striking that our model performs as well as the four-factor model, given that the latter

was developed in full knowledge of the size, value, and momentum anomalies. By contrast,

our model was developed independently of any information about the anomalies: prospect

theory itself was designed with no prior knowledge of any anomalies, and we calibrated the

model based on experimental evidence that is again independent of the anomalies. Despite

being handicapped in this way, our model is able to match the four-factor model in its

performance. It is not surprising that our model underperforms the five- and six-factor

models, as these were developed in full knowledge of multiple anomalies.

6 Discussion

In Section 5, we saw that the prospect theory model can help explain a majority of the 22

anomalies in Table 1. We now discuss some other issues raised by our analysis. In Section

6.1, we revisit the assumption that investors have sensible beliefs about the return volatility

and return skewness of the typical stock in each anomaly decile. And in Section 6.2, we

review the limits to arbitrage that allow investors with prospect theory preferences to have

a substantial impact on asset prices. In the Internet Appendix, we discuss the impact of

investor heterogeneity on our results and contrast our predictions with those of a model that

assumes broad, rather than narrow, framing.
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6.1 Investor beliefs

Figures 9 and 10 show that, for some anomalies, our model performs poorly. Why is this?

One answer is that, for some anomalies, the risk attitudes captured by prospect theory are not

the primary driver of average returns. Indeed, for a number of the anomalies that our model

performs poorly on – for example, size, value, and investment – plausible explanations are

already available. This suggests that, for these anomalies, other factors are more important

than prospect theory in determining average returns.

There is another answer, however, one that applies within the prospect theory framework.

In generating Figures 5-11, we assumed that investors have accurate beliefs about stocks’

return volatility, return skewness, and gain overhang. However, for certain types of stocks,

investors’ beliefs about these characteristics may be incorrect.

In Internet Appendix D and Table A1, we present some evidence on this issue. Specif-

ically, we take data on the prices of stock options and use them to extract estimates of

risk-neutral variance and risk-neutral skewness – for example, the risk-neutral skewness of

the typical stock in decile 1 of the value anomaly or decile 10 of the failure probability

anomaly. Since these are estimates of risk-neutral quantities, they can offer only preliminary

evidence on investors’ beliefs about the physical return distribution. However, prior studies

suggest that a substantial part of the variation in risk-neutral moments is due to variation

in beliefs about physical returns (Birru and Wang, 2016).

The results in Table A1 suggest that, for most types of stocks, investors have sensible

beliefs: the risk-neutral variance and skewness are almost always higher for stocks whose

actual return variance and skewness are higher. For example, the risk-neutral skewness of

the typical stock in decile 10 of the volatility anomaly is higher than the risk-neutral skewness

of the typical stock in decile 1 for this anomaly, suggesting that investors are aware of the

higher physical skewness of volatile stocks. There is, however, one notable exception: the

risk-neutral skewness of value stocks is the same as that of growth stocks, even though the

actual return skewness of value stocks is much higher than that of growth stocks.

This last finding may explain why our model performs poorly on the value anomaly. To

generate the value anomaly graph in Figure 9, we assumed that investors know that value

stocks have more positively-skewed returns than growth stocks; this, in turn, leads the model

to predict a lower average return on value stocks. However, if investors think that the return

skewness of value stocks and growth stocks is similar, this will increase the average return

that the model predicts for value stocks relative to growth stocks, reducing the gap between

33



the empirical and model-predicted alphas.27

6.2 Limits to arbitrage

In our model, investors who evaluate risk according to prospect theory leave an imprint on

asset prices. Can traditional Expected Utility investors attenuate these price effects?

For several reasons, it is difficult for Expected Utility investors to do so. One reason

relates to the specific form of the mispricing that prospect theory investors generate, namely,

mild underpricing but severe overpricing. This pattern can be seen in almost all of the 22

anomalies. For example, in the volatility anomaly graph in Figure 5, the stocks in deciles 1

to 7 are slightly underpriced – they are predicted to earn small positive alphas – while the

stocks in deciles 9 and 10 are very overpriced. Importantly, the stocks in deciles 9 and 10 are

not only very volatile, but also have highly-skewed returns and low market capitalizations.

To attenuate the mispricing caused by prospect theory investors, Expected Utility investors

need to correct the overpricing; what underpricing there is, is already small in magnitude.

But to correct the overpricing, they have to short a large number of highly-skewed small-cap

stocks, a strategy that entails high costs and fees.

Expected Utility investors also face other, more general limits to arbitrage. For most

anomalies, the stocks in each extreme decile comove in their returns; for example, there is

a common factor in the returns of value stocks, and also in the returns of growth stocks.

As such, a strategy that buys the stocks in one extreme decile and shorts the stocks in the

other can have very volatile returns, which limits arbitrage. The risk that the mispricing will

worsen in the short run, leading to fund outflows or margin calls, is an additional deterrent

to professional arbitrageurs (Shleifer and Vishny, 1997).

Finally, to exploit the mispricing caused by prospect theory investors, Expected Utility

investors would first need to detect it, and this can take many years. For example, the

idiosyncratic volatility anomaly was present in the data for decades before it became widely

known with the publication of Ang et al. (2006). If some part of the volatility anomaly was

due to the actions of prospect theory investors, these actions went undetected for a very long

time.

27Bordalo, Gennaioli, and Shleifer (2013) suggest that investors find the potential upside of growth stocks,
and the potential downside of value stocks, to be more salient. Such a mechanism may underlie investors’
incorrect beliefs about the relative skewness of value and growth stock returns.
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7 Conclusion

As a highly influential model of risk attitudes, prospect theory has the potential to shed light

on investor behavior. However, despite years of effort, a basic question about the theory’s

implications for asset prices remains unanswered: What does it predict about the relative

average returns of different types of assets? In this paper, we answer this question, and

in particular show that prospect theory can help explain a majority of 22 prominent stock

market anomalies.

Our paper joins a growing body of work that shows that prospect theory is useful for

thinking about a wide range of facts in finance. It also shows that a framework that is deeply

rooted in psychology can nonetheless make clear quantitative predictions. We are not aware

of a previous effort to use a behavioral model to make quantitative predictions about a large

number of stock market anomalies, but our analysis shows that this goal can be achieved.

We expect to see much more finance research that is both psychological and quantitative in

the years ahead.

8 Supplementary details

8.1 The probability weighting terms

Here, we provide the full expressions for the dw(P (Ri)) and dw(1 − P (Ri)) terms which

appear in (11), (16), and (20). We can write

dw(P (Ri)) =
dw(P (Ri))

dP (Ri)

dP (Ri)

dRi
dRi.

By differentiating the probability weighting function in (6), and using P as shorthand for

P (Ri), we can write the right-hand side above as

δP δ−1(P δ + (1− P )δ)− P δ(P δ−1 − (1− P )δ−1)

(P δ + (1− P )δ)1+
1
δ

p(Ri)dRi,

where the probability density function p(Ri) is given in (12). Similarly,

dw(1− P (Ri)) =
dw(1− P (Ri))

dP (Ri)

dP (Ri)

dRi

dRi
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= −δ(1 − P )δ−1(P δ + (1− P )δ)− (1− P )δ((1− P )δ−1 − P δ−1)

(P δ + (1− P )δ)1+
1
δ

p(Ri)dRi.

8.2 Rescaling the decision problem

Substituting the definitions in (19) into (16) and multiplying the resulting expression by the

exogenous parameter Θ−1
M,R, we obtain

θi(μi +
νζi

ν − 2
− Rf )− γ̂

2
(θ2i σ

2
i + 2

∑
j �=i

σijθiθM,j)

−λb̂0

∫ Rf−θi,−1gi/θi

−∞
(θi(Rf − Ri)− θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−θi,−1gi/θi
(θi(Ri − Rf) + θi,−1gi)

αdw(1− P (Ri)), (31)

where

γ̂ = γW0ΘM,R, b̂0 = b0W
α−1
0 Θα−1

M,R.

It follows that if Θi maximizes (16), then θi = Θi/ΘM,R maximizes (31), and conversely

that if θi maximizes (31), then Θi = θiΘM,R maximizes (16). Maximizing (16) is therefore

equivalent to maximizing (31).

The rescaling also allows us to simplify the variance term in the first row of (31). Specif-

ically, the quantity ∑
j �=i

θM,jσij

can be rewritten as

−θM,iσ
2
i +

∑
j

θM,jσij = −θM,iσ
2
i + cov(R̃i, R̃M ) = −θM,iσ

2
i + βiσ

2
M ,

where R̃M is the return on the market portfolio of all risky assets, σM is the standard

deviation of this return, and βi is the beta of asset i. Substituting this into (31) leads to the

expression in (20).

8.3 Procedure for computing expected returns

The equilibrium structure we consider – a bounded-rationality equilibrium with heteroge-

neous holdings – consists of a location vector (μ1, . . . , μN) such that, for each i, the expression
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in (20) has either a unique global maximum at θ∗i = θM,i or else two global maxima at θ∗i
and θ∗∗i with θ∗i < θM,i < θ∗∗i .

We now explain how we compute this heterogeneous-holdings equilibrium. For a given

risky asset i, we first check whether investors have identical holdings in that asset, in other

words, whether they all hold the same per-capita market supply θM,i. To do this, we take

the first derivative of (20), substitute in θi = θM,i, and set the resulting expression to 0. This

gives28

0 = (μi +
νζi

ν − 2
− Rf)− γ̂βiσ

2
M

−αλb̂0

∫ Rf−θi,−1gi/θi

−∞
(θM,i(Rf −Ri)− θi,−1gi)

α−1(Rf − Ri)dw(P (Ri))

−αb̂0

∫ ∞

Rf−θi,−1gi/θi
(θM,i(Ri −Rf ) + θi,−1gi)

α−1(Ri − Rf )dw(1− P (Ri)). (32)

We then check whether, for the μi that solves (32), the function in (20) has a global maximum

at θi = θM,i, as opposed to only a local maximum or a local minimum. If θi = θM,i indeed

corresponds to a global maximum, then all investors have identical holdings of risky asset

i, each holding the per-capita supply of the asset, namely θM,i. If the function in (20) does

not have a global maximum at this θi, then, in equilibrium, investors do not have identical

holdings of asset i. We must instead look for an equilibrium with heterogeneous holdings.

To find an equilibrium with heterogeneous holdings of asset i, we search for a value of

μi such that the maximum value of the function in (20) in the range (−∞, θM,i), attained

at θi = θ∗i , say, is equal to the maximum value of the function in the range (θM,i,∞),

attained at θi = θ∗∗i . If we find such a μi, then there is an equilibrium where investors have

heterogeneous holdings of the asset, with some investors allocated to θi = θ∗i and others

allocated to θi = θ∗∗i . The value of μi for which this holds is typically close to the value of μi

that solves the first-order condition (32). Therefore, if we find that, for the value of μi that

solves (32), the function in (20) does not have a global maximum at θi = θM,i, we search in

the neighborhood of that μi for an equilibrium with heterogeneous holdings.

28As discussed in Section 4, we take θi,−1 = θM,i, which further simplifies (32).
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Table 1. Stock market anomalies.

Anomaly Abbreviation
Idiosyncratic volatility IVOL
Market capitalization SIZE
Value VAL
Expected idiosyncratic skewness EISKEW
Momentum MOM
Failure probability FPROB
O-Score OSC
Net stock issuance NSI
Composite equity issuance CEI
Accrual ACC
Net operating assets NOA
Gross profitability PROF
Asset growth AG
Return on assets ROA
Investment INV
Maximum daily return MAX
Organizational capital ORGCAP
Long-term reversal LTREV
External finance XFIN
Short-term reversal STREV
Difference of opinion DOP
Post-earnings announcement drift PEAD
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Table 3. The table reports the average absolute monthly pricing error across
the 22 anomalies for the prospect theory model of Section 3 and for five
factor models: the CAPM; the Fama-French three-factor model; the Carhart
four-factor model; the Fama-French five-factor model; and a six-factor model
that augments the five-factor model with a momentum factor. For a given
factor model, we compute the alphas of the 22 long-short portfolios that,
for the 22 anomalies, go long the stocks in anomaly decile 1 and short the
stocks in anomaly decile 10; we report the average absolute alpha. For the
prospect theory model, we compute, for the 22 anomalies, the difference in
the empirical and theoretically-predicted average return of the 22 long-short
portfolios; we report the average absolute return difference.

Model Average absolute pricing error
Prospect theory 0.56
CAPM 0.81
Three-factor model 0.80
Four-factor model 0.56
Five-factor model 0.45
Six-factor model 0.32
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Figure 1. The left panel plots the value function proposed by Tversky and Kahne-
man (1992) as part of their cumulative prospect theory, namely, v(x) = xα for x ≥ 0
and v(x) = −λ(−x)α for x < 0, for α = 0.5 and λ = 2.5. The right panel plots the
probability weighting function proposed by Tversky and Kahneman (1992), namely,
w(P ) = P δ/(P δ + (1 − P )δ)1/δ, for three different values of δ. The dashed line
corresponds to δ = 0.4, the solid line to δ = 0.65, and the dotted line to δ = 1.
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Figure 2. Each graph plots 220 asterisks, where each asterisk corresponds to one
of 10 deciles for one of 22 anomalies. In the top-left graph, a given asterisk that
corresponds to some anomaly decile marks the standard deviation of returns and the
return skewness of the typical stock in that anomaly decile. In the top-right graph,
each asterisk marks the standard deviation of returns and the capital gain overhang
of the typical stock in some anomaly decile. In the bottom-left graph, each asterisk
marks the return skewness and capital gain overhang of the typical stock in some
anomaly decile.
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Figure 3. The graph shows that investors have identical holdings of each stock in
momentum decile 1. The solid line plots the value of an investor’s objective function
in equilibrium, as a function of θ1, the (scaled) fraction of the investor’s portfolio
allocated to stock 1, which belongs to momentum decile 1. The function has a
unique global maximum at the point where θ1 equals the weight of stock 1 in the
market portfolio, namely 1.85× 10−4.
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Figure 4. The graph shows that investors have heterogeneous holdings of each
stock in momentum decile 10. The solid line plots the value of an investor’s objective
function in equilibrium, as a function of θ901, the (scaled) fraction of the investor’s
portfolio allocated to stock 901, which belongs to momentum decile 10. The function
has two global maxima which straddle the weight of stock 901 in the market portfolio,
namely 7.5×10−4. The dashed line plots the objective function for a higher expected
return on the stock, while the dash-dot line plots the objective function for a lower
expected return.

48



2 4 6 8 10

decile

-20

-10

0

10

al
ph

a
Momentum

2 4 6 8 10

decile

-15

-10

-5

0

al
ph

a

Failure probability

2 4 6 8 10

decile

-15

-10

-5

0

al
ph

a

Idiosyncratic volatility

2 4 6 8 10

decile

-4

-2

0

2
al

ph
a

Gross profitability

Figure 5. The dashed lines in the graphs plot the historical annual alpha of each
anomaly decile for the momentum, failure probability, idiosyncratic volatility, and
gross profitability anomalies. The solid lines plot the alphas predicted by a model
in which investors evaluate risk according to prospect theory.
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Figure 6. The dashed lines in the graphs plot the historical annual alpha of each
anomaly decile for the expected idiosyncratic skewness, return on assets, and max-
imum daily return anomalies. The solid lines plot the alphas predicted by a model
in which investors evaluate risk according to prospect theory.
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Figure 7. The dashed lines in the graphs plot the historical annual alpha of each
anomaly decile for the O-score, external finance, and composite equity issuance
anomalies. The solid lines plot the alphas predicted by a model in which investors
evaluate risk according to prospect theory.
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Figure 8. The dashed lines in the graphs plot the historical annual alpha of each
anomaly decile for the net stock issuance, post-earnings announcement drift, and
difference of opinion anomalies. The solid lines plot the alphas predicted by a model
in which investors evaluate risk according to prospect theory.
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Figure 9. The dashed lines in the graphs plot the historical annual alpha of each
anomaly decile for the size, value, long-term reversal, and short-term reversal anoma-
lies. The solid lines plot the alphas predicted by a model in which investors evaluate
risk according to prospect theory.
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Figure 10. The dashed lines in the graphs plot the historical annual alpha of each
anomaly decile for the accrual, asset growth, and investment anomalies. The solid
lines plot the alphas predicted by a model in which investors evaluate risk according
to prospect theory.
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Figure 11. The dashed lines in the graphs plot the historical annual alpha of each
anomaly decile for the net operating assets and organizational capital anomalies.
The solid lines plot the alphas predicted by a model in which investors evaluate risk
according to prospect theory.
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INTERNET APPENDIX

A. The Generalized Hyperbolic (GH) Skewed t distribution

In our model, the vector of asset returns R̃ = (R̃1, . . . , R̃N ) follows an N -dimensional GH

skewed t distribution. The density function for this distribution is

p(R) =
21−

ν+N
2

Γ(ν
2
)(πν)

N
2 |S| 12 .

K ν+N
2
(
√
(ν + (R− μ)′S−1(R− μ))ζ ′S−1ζ) exp((R− μ)′S−1ζ)(√

(ν + (R− μ)′S−1(R− μ))ζ ′S−1ζ
)− ν+N

2
(1 + (R− μ)′S−1(R − μ)/ν)

ν+N
2

,

for ζ �= 0

p(R) =
Γ(ν+N

2
)

Γ(ν
2
)(πν)

N
2 |S| 12 .(1 + (R− μ)′S−1(R− μ)/ν)−

ν+N
2 , for ζ = 0, (33)

where Γ(·) is the Gamma function and Kl is the modified Bessel function of the second kind

with order l.

The above distribution has four parameters: μ, S, ζ , and ν. Here, μ = (μ1, . . . , μN), the

vector of location parameters, helps to determine the mean of the distribution; S = {Sij},
the dispersion matrix, controls the dispersion in returns; ζ = (ζ1, . . . , ζN), the vector of

asymmetry parameters, governs the skewness of returns; and ν, a degree of freedom scalar,

affects the heaviness of the tails of the distribution. The mean of the distribution is

μ+
ν

ν − 2
ζ . (34)

For our computations, we need only the marginal distribution of each asset’s return; this

is the one-dimensional GH skewed t distribution in equation (12). In that equation, μi and

ζi are the i’th elements of the vectors μ and ζ , respectively, while Si is the i’th diagonal

element of S.

B. Stock market anomalies

Here, we list the predictor variable associated with each of the 22 anomalies that we

study.

IVOL. Idiosyncratic volatility. Standard deviation of the residuals from a firm-level regression

of daily stock returns on the daily Fama-French three factors using data from the past month.

See Ang et al. (2006).
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SIZE. Market capitalization. The log of the product of price per share and number of shares

outstanding, computed at the end of the previous month.

VAL. Book-to-market. The log of book value of equity scaled by market value of equity, com-

puted following Fama and French (1992) and Fama and French (2008); firms with negative

book value are excluded from the analysis.

EISKEW. Expected idiosyncratic skewness, computed as in Boyer, Mitton, and Vorkink

(2010).

MOM. Momentum. Measured at time t as the stock’s cumulative return from the start of

month t− 12 to the end of month t− 2.

FPROB. Failure probability. Estimated using a dynamic logit model with both accounting

and equity market variables as explanatory variables. See Campbell, Hilscher, and Szilagyi

(2008).

OSC. O-Score. Uses accounting variables to estimate the probability of bankruptcy. See

Ohlson (1980).

NSI. Net stock issuance. Growth rate of split-adjusted shares outstanding over the previous

fiscal year. See Stambaugh, Yu, and Yuan (2012).

CEI. Composite equity issuance. Five-year change in number of shares outstanding, exclud-

ing changes due to dividends and splits. See Daniel and Titman (2006).

ACC. Accruals. See Sloan (1996).

NOA. Net operating assets. See Hirshleifer, Hou, Teoh, and Zhang (2004).

PROF. Gross profitability. Measured as revenue minus cost of goods sold at time t, divided

by assets at time t− 1. See Novy-Marx (2013).

AG. Asset growth. Percentage change in total assets over the previous year. See Cooper,

Gulen, and Schill (2008).

ROA. Return on assets. Income before extraordinary items divided by total assets. See

Stambaugh, Yu, and Yuan (2012).

INV. Investment to assets. The annual change in gross property, plant, and equipment plus

the annual change in inventory, scaled by the lagged book value of assets. See Stambaugh,

Yu, and Yuan (2012).
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MAX. A stock’s maximum one-day return in month t − 1. See Bali, Cakici, and Whitelaw

(2011).

ORGCAP. Organizational capital. See Eisfeldt and Papanikolaou (2013).

LTREV. Long-term reversal. The stock’s cumulative return from the start of month t− 60

to the end of month t− 13.

XFIN. External finance. Total net external financing scaled by total assets. See Bradshaw,

Richardson, and Sloan (2006).

STREV. Short-term reversal. The stock’s return in month t− 1.

DOP. Difference of opinion. The standard deviation of earnings forecasts (unadjusted IBES

file, item STDEV) divided by the absolute value of the consensus mean forecast (unadjusted

file, item MEANEST). We use the forecasts for the current fiscal year. See Diether, Malloy,

and Scherbina (2002).

PEAD. Post-earnings announcement drift. Measured as standardized unexpected earnings:

the change in the quarterly earnings per share from its value four quarters before divided by

the standard deviation of this change in quarterly earnings over the previous eight quarters.

See Foster, Olsen, and Shevlin (1984).

C. Additional details about the equilibrium structure

In this section, we present additional information about the equilibrium structure illus-

trated in Figures 3 and 4.

Figure 3 plots the objective function, in equilibrium, for a stock in momentum decile 1,

stock 1, a stock for which investors have identical holdings. Why does it have this shape?

In our model, investors usually have identical holdings in stocks that are trading at a loss

and that, in part because of this, have a low, even negative, expected return. As an investor

increases his allocation to stock 1, utility initially rises: he is in the convex region of the

value function, where he is risk-seeking. As he further increases his allocation, utility falls:

a larger fraction of time 1 outcomes bring the investor to the right of the kink in the value

function, increasing his risk aversion; the stock’s low expected return and the greater portfolio

volatility caused by the larger allocation to the stock decrease utility further.

The solid line in Figure 4 plots the objective function, in equilibrium, for a stock in

momentum decile 10, stock 901, a stock for which investors have heterogeneous holdings.

58



Why does it have this shape? The heterogeneous holdings typically arise for stocks that

are trading at a gain and that, in part because of this, have a high expected return. As

an investor increases his allocation to the stock, utility initially falls; this is because he is

in the gain region of the prospect theory value function, where he is risk averse. As he

further increases his allocation, utility starts to rise; this is due to the stock’s high average

return. Finally, as the investor increases his allocation even more, utility falls again: the

large holdings of the stock create high portfolio volatility, which lowers utility.29

For any stock in momentum decile 10, there is no equilibrium in which investors have

identical holdings in the stock. We can see this in Figure 4 for the case of stock 901. The

dashed line plots the function in (20) for μ901 = 0.5793. For this value of μ901, the function

has a unique global maximum at θ901 = 0.14 > θM,901 = 7.5× 10−4. Since demand for stock

901 exceeds supply at this value of μ901, it appears that, to clear the market, we need to

lower the value of μ901. However, as we do so, the value of θ901 at which the function attains

its maximum jumps discontinuously downward: the dash-dot line, which plots the objective

function for a slightly lower value of μ901, namely 0.5743, shows that the unique maximum

is now at θ901 = 0 < θM,901. As such, there is no value of μ901 such that the function in (20),

for i = 901, has a unique global maximum at θ901 = θM,901.

At time 0, for a stock in which investors have heterogeneous holdings, there is substantial

volume as investors adjust their holdings of the stock from their time −1 level, θM,i, to either

θ∗i or θ
∗∗
i . For a stock in which, at time 0, investors have identical holdings, there is no volume.

A stock is more likely to have heterogeneous holdings if it has a positive gain overhang. Our

model therefore predicts higher trading volume for stocks with a high positive gain overhang

than for stocks with a low negative gain overhang. We find that, if, in historical U.S. data,

we sort stocks by their gain overhang or, more simply, by their return over the previous year,

then, consistent with this prediction, stocks in the decile with the highest gain overhang

indeed have higher trading volume than stocks in the decile with the lowest gain overhang.

D. Inferring beliefs from option prices

When generating our model’s predictions for average returns, we assume that investors

have sensible beliefs about the return volatility and return skewness of the typical stock in

each anomaly decile. We now present some evidence on this assumption. Specifically, we

29As the investor increases his allocation to stock 901 from zero, the objective function actually rises
slightly before falling. The initial rise is not visible to the naked eye in Figure 4, but it is the reason the
lower optimum θ∗ is strictly greater than zero. For stock 901, the investor is in the gain region of the value
function at time 0. While the value function is concave over gains, it exhibits second-order risk aversion.
This, and the stock’s high expected return, explain the objective function’s initial rise.
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take data on the prices of stock options and use them to extract estimates of risk-neutral

variance and risk-neutral skewness.

Our options data come from the IvyDB OptionMetrics database, which provides option

prices, volume, and open interest from January 1996 to December 2015. We use these data

to compute, for each anomaly, the risk-neutral variance and risk-neutral skewness of the

typical stock in each of the two extreme anomaly deciles. Specifically, for a given month and

anomaly decile, we compute the risk-neutral moments for each stock in the decile for which

option data are available, and then average the results across the stocks in the decile. We

then compute time-series means across all months in the sample.

Our methodology follows that of Birru and Wang (2016). We compute risk-neutral

variance and skewness using equations (1)-(4) in their paper, which were originally derived

by Bakshi, Kapadia, and Madan (2003); see their Theorem 1. These equations assume a

continuum of options; we use a discrete approximation. We implement the calculation only

for stocks with at least two out-of-the-money (OTM) puts and two OTM calls; Dennis and

Mayhew (2002) argue that the biases that arise from the discrete approximation are small

in this case.

We compute 30-day risk-neutral moments. One-year moments would be a better match

for the volatility and skewness of annual returns reported in Table 2. We focus on 30-day

moments because short-maturity options are more heavily traded and therefore likely to give

us more reliable estimates. However, we have also computed 60-day and one-year moments

and find that these lead to similar conclusions.

To compute the 30-day moments, we interpolate the moments of the option with expira-

tion closest to, but less than, 30 days and the option with expiration closest to, but greater

than, 30 days. If there is no option with maturity longer (shorter) than 30 days, we use the

option with the longest (shortest) available maturity.

To minimize the impact of data errors, we remove options with missing best bid or

offer prices, as well as those with bid prices less than or equal to $0.05. We also remove

options that violate arbitrage bounds; options with zero open interest; options with special

settlement arrangements; and options for which the underlying stock price is under $10. We

take the option price to be the midpoint of the best bid and best offer.

Table A1 reports, for each anomaly, the 30-day risk-neutral variance and risk-neutral

skewness of the typical stock in each of the two extreme anomaly deciles. Comparing these

results to those in Table 2, we see that, for most types of stocks, investors have sensible
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beliefs: the risk-neutral variance and skewness are almost always higher for stocks whose

actual return volatility and skewness are higher. There is, however, one notable exception:

the risk-neutral skewness of value stocks is the same as that of growth stocks, even though

the actual return skewness of value stocks is much higher than that of growth stocks.

As noted in Section 6.1, this last finding may explain why our model performs poorly

on the value anomaly. To generate the value anomaly graph in Figure 9, we assumed that

investors know that value stocks have more positively-skewed returns than growth stocks;

this, in turn, leads the model to predict a lower average return on value stocks. However,

if investors think that the return skewness of value stocks and growth stocks is similar, this

will increase the average return that the model predicts for value stocks relative to growth

stocks, reducing the gap between the empirical and model-predicted alphas.

E. Investor heterogeneity

To keep our model tractable, we assume that, along several dimensions, the investors in

the economy are identical. For example, at time 0, the second term on the right-hand side

of equation (10) is the same for all investors: they all have the same initial allocation Θ−1

to each risky asset and experience the same capital gain g.

While it is not possible to study heterogeneity in a general way, our model does allow

us to consider simple forms of heterogeneity. The outcome of this exercise is reassuring: the

model predictions turn out to be quite robust to investor heterogeneity.

Take, for example, momentum decile 10. As shown in Table 2, the gain overhang of the

typical stock in this decile is 30.8%. Accordingly, in our main analysis, we assume that, for

this stock, all investors have the same prior gain of 30.8%, an assumption that leads the

model to predict an expected return of 8.47% for the stock. Suppose instead that, for this

stock, half of the investors have a gain of 30.8 − 10 = 20.8% while the other half have a

gain of 30.8 + 10 = 40.8%. We find that there is then an equilibrium in which the objective

function for the 40.8-gain investors has a single global optimum at θ∗ = 1.24× 10−4 < θM =

7.47 × 10−4, while the objective function for the 20.8-gain investors has two global optima

at θ∗ = 6.17× 10−5 < θM and θ∗∗ = 0.109 > θM . In equilibrium, the stock has an expected

return of 8.35%. As such, heterogeneity affects the expected return, but in a minor way.

For momentum decile 1, where investors have identical holdings of each stock, the impact

of heterogeneity is even smaller. As shown in Table 2, the gain overhang of the typical stock

in this decile is −44.6%. In our main analysis, we assume that all investors have the same

prior gain of −44.6% in the stock, and this leads to a predicted expected return of −6.66%.
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Suppose that we instead assume that half of the investors have a gain of−44.6−10 = −54.6%

while the other half have a gain of −44.6+10 = −34.6%. In this case, there is an equilibrium

in which the objective function of the −54.6-gain investors has a single global optimum at

θ∗ = 2.25 × 10−4 > θM = 1.85 × 10−4, while that for the −34.6-gain investors has a single

global optimum at θ∗ = 1.45× 10−4 < θM . The predicted expected return is the same as in

the equilibrium with identical investors, namely −6.66%.

The fact that heterogeneity in g has a relatively small impact on our results immediately

implies that heterogeneity in Θ−1, investors’ time −1 allocation to risky assets, will also have

little impact: equation (10) shows that allowing for heterogeneity in Θ−1 is mathematically

equivalent to allowing for heterogeneity in g.

F. Broad vs. narrow framing

The model of Section 3 assumes that investors engage in narrow framing: they derive

prospect theory utility from stock -level gains and losses. How do the predictions of this model

compare with those of a model with broad framing, in other words, one where investors derive

prospect theory utility from portfolio gains and losses?

Models that apply prospect theory at the portfolio level are less tractable than those with

narrow framing. However, under the same bounded-rationality assumption that we adopt

in Section 3, we have been able to solve a model with broad framing, and have used it to

generate predictions about the anomalies in Table 1. We find that the broad framing model

is less successful than the narrow framing model at explaining the anomalies. Under narrow

framing, a stock’s gain overhang affects its average return in a way that can shed light on

several anomalies. Under broad framing, however, investors’ focus on portfolio gains and

losses means that a stock’s own gain overhang has much less impact on its average return;

this, in turn, means that the broad framing model is less able to explain the observed facts.

The greater success of the narrow framing model offers support for our conjecture, in Section

3, that narrow framing is a realistic psychological assumption.
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Table A1. The first column lists 22 anomalies; the acronyms are defined in
Table 1. The remaining columns report, for each anomaly, the 30-day risk-
neutral variance and risk-neutral skewness of the typical stock in anomaly
decile 1 and anomaly decile 10. The risk-neutral measures are extracted from
the prices of options on individual stocks over the 1996-2015 sample period.

Anomaly RN-variance RN-variance RN-skewness RN-skewness
Decile 1 Decile 10 Decile 1 Decile 10

IVOL 0.03 0.17 –0.53 –0.21
SIZE 0.23 0.02 –0.12 –0.60
VAL 0.06 0.13 –0.36 –0.36
EISKEW 0.04 0.17 –0.45 –0.18
MOM 0.17 0.07 –0.21 –0.32
FPROB 0.05 0.22 –0.35 –0.24
OSC 0.05 0.18 –0.36 –0.18
NSI 0.05 0.10 –0.41 –0.28
CEI 0.04 0.10 –0.43 –0.28
ACC 0.12 0.09 –0.27 –0.26
NOA 0.10 0.07 –0.28 –0.34
PROF 0.13 0.06 –0.25 –0.34
AG 0.12 0.09 –0.27 –0.29
ROA 0.17 0.05 –0.19 –0.37
INV 0.09 0.08 –0.30 –0.32
MAX 0.03 0.14 –0.46 –0.29
ORGCAP 0.08 0.08 –0.34 –0.31
LTREV 0.17 0.06 –0.25 –0.35
XFIN 0.05 0.11 –0.39 –0.25
STREV 0.12 0.09 –0.12 –0.40
DOP 0.04 0.11 –0.44 –0.29
PEAD 0.08 0.06 –0.33 –0.36
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